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We investigate the elastic wave propagation in various hyperelastic materials which are subjected to 

simple-shear deformation. Two compressible types of three conventional hyperelastic models are con- 

sidered. We found pure elastic wave modes that can be obtained in compressible neo-Hookean materials 

constructed by adding a bulk strain energy term to the incompressible strain energy function. Mean- 

while, for the compressible hyperelastic models which are reformulated into deviatoric and hydrostatic 

parts, only quasi modes can propagate, with abnormal ray directions that can be observed for longitudinal 

waves. Moreover, the influences of material constants, material compressibility and external deformations 

on the elastic wave propagation and refraction in these hyperelastic models are systematically studied. 

Numerical simulations are carried out to validate the theoretical results. This investigation may open a 

promising route for the realization of next generation metamaterials and novel wave manipulation de- 

vices. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Soft materials such as elastomers, gels and many biological tis-

ues usually exhibit rich and complex static and dynamic behav-

ors when subjected to finite deformation. To describe the nonlin-

ar mechanical behavior of such materials, hyperelasticity is usu-

lly employed. Many hyperelastic models (or Strain Energy Func-

ions, SEFs) ( Simo and Pister, 1984; Arruda and Boyce, 1993; Gent,

996; Hartmann and Neff, 2003 ) are proposed based on experi-

ental data fitting ( Ogden, 1972; Yeoh, 1993; Boyce and Arruda,

012 ), and hereafter applied for theoretical and numerical anal-

ses. Recently, soft materials with hyperelastic SEFs have drawn

onsiderable attention in the field of elastodynamics. In particular,

y virtue of the high sensitivity to deformations and the remark-

ble capability of reversible structural instability of soft materials,

oft metamaterials or soft phononic crystals ( Bertoldi and Boyce,

008; Auriault and Boutin, 2012; Wang and Bertoldi, 2012; Shim

t al., 2015 ) with tunable or adaptive properties have been demon-

trated for wave applications. Moreover, a Hyperelastic Transforma-

ion theory ( Norris and Parnell, 2012; Parnell, 2012; Chang et al.,

015; Liu et al., 2016 ) has been reported, providing homogeneous

oft materials with certain SEFs that can be utilized to manipulate

lastic wave paths. In all these works, it is generally revealed that

ubtle differences in hyperelastic models may cause significant, or
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ven subversive, distinctions in the performance of the soft de-

ices. Therefore, a comprehensive understanding of the mechanical

ehaviors for different SEFs is essential, especially for applications

here high-precision is demanded. 

Hyperelastic materials are usually considered to be incompress-

ble. However, compressible hyperelastic models are indispens-

ble in considering the longitudinal wave motion in elastodynamic

roblems. There are a couple of approaches to extend an incom-

ressible hyperelastic model to a compressible form ( Boyce and Ar-

uda, 2012 ). It has been demonstrated ( Ehlers and Eipper, 1998 )

hat these two versions of the SEFs have substantially differ-

nt static behaviors, especially when the volume of the material

hanges significantly. Nevertheless, the way in which these SEFs

elate to their dynamic properties is still elusive. 

Moreover, a previous study ( Chang et al., 2015 ) has proposed

 feasible method to separate longitudinal and shear waves with a

imple-sheared neo-Hookean solid. Considering the diversity of hy-

erelastic models, there remains an unmet need for understanding

he capability of wave-mode separation for different hyperelastic

odels. 

To address the aforementioned issues, in this paper, we fo-

us on the propagation and refraction of elastic waves in simple-

heared hyperelastic materials. In the framework of Small-on-Large

heory ( Ogden, 2007 ), the dynamic behaviors of two different com-

ressible types of the three conventional incompressible hyperelas-

ic models are considered. We show that pure elastic wave modes

ay propagate in a compressible neo-Hookean model which is

http://dx.doi.org/10.1016/j.ijsolstr.2017.07.027
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constructed by adding a bulk strain energy term to an incompress-

ible SEF. For a compressible model reformulated from a conven-

tional incompressible SEF into a deviatoric part and a hydrostatic

part, only quasi wave modes exist. When considering the refraction

of elastic waves which are normally incident on a plane interface

from an un-deformed hyperelastic material to a pre-deformed one,

significant differences can be observed in the refraction angle of

the longitudinal wave between the two versions of SEFs. Both the-

oretical analysis and numerical simulations are carried out to con-

firm each other. The paper is organized as follows: in Section 2 , the

approaches to extend the incompressible SEFs to the compressible

ones are briefly reviewed; the Small-on-Large theory, which de-

scribes linear wave motion propagation in a finitely deformed hy-

perelastic material, is reviewed in Section 3 . Moreover, the behav-

ior of elastic wave propagation and refraction in a simple-sheared

hyperelastic material with different SEFs is shown in Section 4 ,

with numerical validations illustrated in Section 5 . Finally, a dis-

cussion on our results and on the avenues for future work is pro-

vided in Section 6 . 

2. Strain energy functions for compressible hyperelastic 

materials 

In this section, we briefly review the two approaches

( Boyce and Arruda, 2012 ) for expanding an incompressible SEF into

a compressible one. 

Approach I involves adding a bulk strain energy term W B to an

existing incompressible isotropic SEF W C . Thus, the compressible

SEF can be expressed as 

 1 = W C ( I 1 , I 2 , J ) + W B ( J ) , (1)

where I 1 and I 2 are the first and second invariant of the right

Cauchy–Green tensor, respectively. J = det (F ) is the volumetric ra-

tio. F ij = ∂ x i / ∂ X j denotes the deformation gradient, in which X j and

x i are the coordinates in the initial and the current configurations,

respectively. 

Approach II involves applying a multiplicative decomposition on

the Cauchy–Green deformation tensor, and reformulating the in-

compressible SEF into a deviatoric one. A hydrostatic strain energy

term W H is then added to extend the SEF into a compressible form,

namely 

 2 = W D 

(
Ī 1 , ̄I 2 

)
+ W H ( J ) , (2)

where Ī 1 = J −1 I 1 and Ī 2 = J −2 I 2 are the invariants of the deviatoric

stretch tensor. 

In Eqs. (1) and (2) , the bulk stain energy terms W B or W H 

can be selected from some empirical formulas, such as W H1 ( J ) =
B (ln J ) 2 /2, W H2 ( J ) = B (( J 2 − 1)/2 − ln J )/2, W H3 ( J ) = B ( J − 1) 2 /2, and

W H4 ( J ) = B {cosh [ α( J − 1)] − 1}/ α2 , which are provided in former

literature ( Bischoff et al., 2001; Hartmann and Neff, 2003 ). In these

formulas, B and α are material parameters, which can be deter-

mined from the conditions ( Simo and Pister, 1984 ) of W ( F = I )

= 0, ∂W (F = I ) / ∂F = 0 and ∂ 2 W (F = I ) / ∂ F ∂ F = λδi j δkl + μδik δ jl +
μδil δ jk . 

Furthermore, specific examples are presented for future refer-

ence. All the SEFs proposed can be found in previous publications.

For the sake of simplicity, we consider all the SEFs to be in their

two-dimensional (2-D) forms. 

A compressible model of a neo-Hookean SEF constructed by Ap-

proach I can be written as ( Ogden, 1997 ) 

 NH 1 = 

μ

2 

( I 1 − 2) − μ ln (J) + 

λ

2 

(J − 1) 2 , (3)

where λ and μ are the first and the second Lamé constants. The

corresponding form constructed by Approach II can be found as
 Ehlers and Eipper, 1998 ) 

 NH 2 = 

μ

2 

(
Ī 1 − 2 

)
+ 

κ

2 

( ln J ) 
2 
, (4)

here κ = λ+ μ is the 2-D bulk modulus. 

Similarly, two typical compressible forms of the Arruda–Boyce

odel can also be found in previous contributions ( Boyce and Ar-

uda, 2012; Kaliske and Rothert, 1997 ), which can be written as 

 AB 1 = C 1 

[
1 

2 

( I 1 − 2) + 

1 

20 N 

(I 2 1 − 4) + 

11 

1050 N 

2 
(I 3 1 − 8) 

+ 

19 

70 0 0 N 

3 
(I 4 1 − 16) + 

519 

673750 N 

4 
(I 5 1 − 32) 

]

− μ ln (J) + 

λ

2 

(J − 1) 2 , (5)

nd 

 AB 2 = C 1 

[
1 

2 

( ̄I 1 − 2) + 

1 

20 N 

( ̄I 2 1 − 4) + 

11 

1050 N 

2 
( ̄I 3 1 − 8) 

+ 

19 

70 0 0 N 

3 
( ̄I 4 1 − 16) + 

519 

673750 N 

4 
( ̄I 5 1 − 32) 

]

+ 

λ + μ

2 

(
J 2 − 1 

2 

− ln J 

)
, (6)

here C 1 = μ/ ( 1 + 2 / 5 N + 44 / 175 N 

2 + 152 / 875 N 

3 + 834 / 67375 N 

4 )

nd N is a material constant that denotes a measure of the limiting

etwork stretch. Note that the form of C 1 used here is only for 2-

 SEFs. When N → ∞ , the Arruda–Boyce model degenerates to the

eo-Hookean model. 

Another commonly utilized hyperelastic model is the Gent

odel ( Gent, 1996 ). Here we only consider its compressible form

s constructed by Approach I, which can be referred from an ear-

ier work ( Bertoldi and Boyce, 2008 ), namely 

 G1 = −μJ m 

2 

ln 

(
1 − I 1 − 2 

J m 

)
− μ ln J + 

(
λ

2 

− μ

J m 

)
(J − 1) 2 , (7)

here J m 

is a material constant that is related to the strain satura-

ion of the material. Similar to the Arruda–Boyce model, the Gent

odel also degenerates to the neo-Hookean model when J m 

→ ∞ . 

. Small-on-Large wave motion in hyperelastic materials 

The Small-on-Large theory provides an ideal platform for in-

estigating linear wave propagation in finite-deformed hypere-

astic materials. For a hyperelastic solid with a certain SEF, the

quilibrium equation of the finite deformation can be written as

 Ogden, 2007 ) 

( A i jkl U l,k ) ,i = 0 , (8)

here U i denotes the displacement, A ijkl = ∂ 2 W / ∂ F ji ∂ F lk are the

omponents of the fourth-order elastic tensor expressed in the ini-

ial configuration. Furthermore, the governing equation of the lin-

ar wave motion u i that is superimposed on the finite deformation

 i can be written as ( Ogden, 2007 ) 

( A 0 i ′ jk ′ l u l,k ) ,i = ρ0 ̈u j , (9)

here A 0 i ′ jk ′ l = J − 1 F i ′ i F k ′ k A ijkl and ρ0 = J − 1 ρ are the elastic tensor

nd mass density of the current configurations, respectively. ρ is

he density of the initial material. 

For a homogenously deformed hyperelastic material, incremen-

al plane waves can be expressed in the form of ( Ogden, 2007 ) 

 i = m i f 
(
k l j · x j − ωt 

)
, (10)
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Fig. 1. Schematic diagram of elastic waves propagation and refraction in a hypere- 

lastic material under simple-shear. The black and orange frames denote the initial 

and deformed configurations, respectively. The material coordinates are denoted by 

orange grids. γ is the shear angle. The blue and red lines represent the paths of 

P- and S-waves, respectively. θ P and θ S represent the refractive angles of P- and 

S-waves, respectively. In this case, the wave directions in the material is φ = 0. 

w  

F  

i  

l  

U

 

w  

t  

e  

m  

λ  

W  

n  

t  

c  

F  

b  

a  

λ  

r  

t  

S

e  

c  

p  

M  

g  

m  

μ  

s  

i  

f  

a

 

t

a  

s  

o  

t  

p  

r  

t  
here m is a unit polarization vector, f denotes a twice continu-

usly differentiable function, l is the unit vector in the wave direc-

ion, ω is the angular frequency of the elastic waves and k is the

ave number. By inserting Eq. (10) into (9) , the Christoffel equa-

ion can be obtained as 

 0 i ′ jk ′ l l i ′ l k ′ m l = c 2 ρ0 m j , (11) 

here c = ω/ k is the velocity of the wave. By solving the eigenvalue

roblem of Eq. (11) , we can obtain the phase velocities ( V P and

 S ) and polarization angles ( ψ P and ψ S ) of the P- and S-waves

hich propagate in pre-deformed hyperelastic material. The phase-

lowness of the P- and S-waves can thus be yielded as S P , S = 1 / V P , S .

oreover, at a fixed frequency, the slowness curves that give S P,S 

s a function of the wave direction l can be plotted. Furthermore,

he ray velocities of the P- and S-waves can be obtained by the

ule of V 

r 
P , S · l = V P , S ( Auld, 1973 ). The slopes of the ray directions

an be expressed as functions of the wave direction as shown in

 Chang et al., 2015 ) 

an ϕ P,S = 

S P,S sin ϕ − ( d S P,S / d ϕ ) cos ϕ 

S P,S cos ϕ + ( d S P,S / d ϕ ) sin ϕ 

, (12) 

here ϕ = arctan ( l y / l x ) is the wave direction, ϕ P = arctan (V r 
Py 

/V r 
Px 

)

nd ϕ S = arctan (V r 
Sy 

/V r 
Sx 

) denote the directions of the rays. 

To consider the refraction of elastic waves on a plane interface

etween two homogeneously pre-deformed hyperelastic materials,

he refraction angles of the elastic waves can be obtained by the

raphical method proposed by a previous study ( Rokhlin et al.,

985 ). In this work, we particularly consider the refraction of elas-

ic waves normally incident on a plane interface from an un-

eformed hyperelastic material to a pre-deformed one. In this case,

he refraction angles are θP,S = φP,S for any given φ. We define the

eparation angle as θ = | θ S − θP | in order to examine the differ-

nce between the P- and S-waves. 

. Elastic wave propagation in simple-sheared hyperelastic 

aterials 

We first consider the propagation of P- and S-waves in a hy-

erelastic material in a homogeneously simple-shear deformation

tate. For the plane-strain problem, homogeneous displacement

an be defined by the deformation gradient F 11 = F 22 = 1, F 12 = 0

nd F 21 = tan γ , where γ denotes the shear angle of the simple-

heared deformation. Note that in this case the volume of the ma-

erial is unchanged, i.e. J = 1. Moreover, we consider the refraction

f elastic waves normally incident on a simple-sheared hyperelas-

ic material, as a schematic of the problem illustrated in Fig. 1 .

n this case, the plane interface is parallel to the shear direction.

herefore, the refraction angles of the P- and S-waves, which also

enote the directions of ray velocities, can be yielded from the

lowness curves at φ = 0. 

To investigate the effect of two compressible versions of neo-

ookean models ( W NH1 and W NH2 ) on the elastic wave propa-

ation, the slowness curves have been plotted in Fig. 2 (a) and

b). For both SEFs, we choose λ= 4.32 MPa, μ= 1.08 MPa, and

= 1050 kg/m 

3 as the initial material parameters, which refer to a

ompressible variant of material PSM-4 ( Bertoldi and Boyce, 2008 ).

he parameters are normalized to be λ= 4, μ= 1 and ρ = 1, for

ase of the theoretical investigation. For the simple-shear deforma-

ion, the shear angle is set to be γ = arctan (1/3). It can be shown

hat the slowness curves of the S-waves turn out to have a simi-

ar shape. For P-waves, however, the slowness curves exhibit differ-

nt orientations, leading to a significant difference in the directions

f the ray velocities. As shown in Fig. 2 (c), the ray direction of P-

ave in material W NH1 is positive valued when the wave direction

s in a range of φ ∈ [0, π /4]. In contrast, the ray direction is nega-

ive for the case of W . Moreover, the polarization angles for the
NH2 
ave directions in a range of φ ∈ [0, π /4] have been plotted in

ig. 2 (d), showing that elastic waves in material W NH1 are always

n pure modes, which means the polarization directions are paral-

el (or normal) to the propagation directions of the P- (or S-) wave.

nlike W NH1 , only quasi elastic waves can be observed in W NH2 . 

To examine the influences of material parameters on elastic

ave behavior in these hyperelastic models, slowness curves of

he three hyperelastic materials W NH1 , W G1 and W AB1 with differ-

nt material constants are provided in Fig. 3 (a) and (b). The nor-

alized initial parameters and the shear angle are also set to be

= 4, μ= 1, ρ= 1 and γ = arctan (1/3). For W NH1 , W G1 ( J m 

= 10) and

 AB1 ( N = 1), considerable differences are noticeable in the slow-

ess curves, as demonstrated in Fig. 3 (a). However, for larger ma-

erial constants, e.g. J m 

= 20 and N = 3, the slowness curves almost

oincide with each other. For the refraction problem described in

ig. 1 , the influence of compressibility on the three models has

een plotted in Fig. 3 (c). Here, the normalized initial parameters

nd the shear angle are set to be μ= 1, ρ= 1 and γ = arctan(1/3).

/ μ is introduced to represent the compressibility of the mate-

ial. With the increase of the material incompressibility, the refrac-

ion angles of the P-waves significantly decrease, while that of the

-waves remain almost unchanged. Among the three models, W NH1 

xhibits the largest separation angle. However, for W AB1 ( N = 1), the

orresponding separation angle is much smaller, and the two wave

aths almost coincide when the material is nearly incompressible.

oreover, the influence of material constants on the refraction an-

les of the P- and S-waves has been plotted in Fig. 3 (d). The nor-

alized initial parameters and the shear angle are set to be λ= 4,

= 1, ρ= 1 and γ = arctan(1/3). For larger material constants, the

eparation angles of the three SEFs tend to be consistent, because,

n this case, both W G1 and W AB1 degenerate into W NH1 . However

or smaller material constants, considerable differences in the sep-

ration angles are apparent for different SEFs. 

Correspondingly, the influences of material constants and ma-

erial compressibility on elastic wave behavior in materials W NH2 

nd W AB2 are demonstrated in Fig. 4 . It is worth noting that the

lowness curves of the P-waves in Fig. 4 (a) and (b) have a different

rientation with those shown in Fig. 3 (a) and (b). This reveals that

he ray directions of the P-waves are characterized by the two ap-

roaches used to construct the compressible SEFs. Considering the

efraction problem, abnormal ray directions lead to negative refrac-

ions of P-waves for both SEFs derived from Approach II, which is
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Fig. 2. Elastic waves propagation in simple-sheared neo-Hookean materials with the SEFs of W NH1 and W NH2 . (a) The slowness curves of the elastic waves propagating in 

the neo-Hookean material with SEF of W NH1 . φ denotes the wave direction. The arrows denote the directions of the ray velocities, (b) is the same as (a), but for the SEF of 

W NH2 , (c) the ray directions of the elastic waves with the wave direction of φ ∈ [0, π /4], (d) the polarization angles of the elastic waves with the wave direction of φ ∈ [0, 

π /4]. For both SEFs, the normalized initial parameters are λ= 4, μ= 1 and ρ= 1, the shear angle is γ = arctan(1/3). 
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distinct from that of the SEFs constructed by Approach I. This will

consequently result in a larger separation angle of W AB2 than that

of W NH2 , as shown in Fig. 4 (c) and (d). It also should be noted that

for all of the SEFs of Approach I, only W NH1 has the property of

pure mode propagation. 

To study the influence of the shear angle γ on the refrac-

tion properties of different SEFs, the separation angles are plotted

with respect to the shear angle of the simple-shear deformation,

as shown in Fig. 5 . The normalized initial parameters for all the

SEFs are λ= 4, μ= 1 and ρ = 1. The material constants are set to

be J m 

= 10 for W G1 , and N = 1 for W AB1 and W AB2 . In the case of

neo-Hookean materials ( W NH1 and W NH2 ), Fig. 5 clearly demon-

strates the linear property of their capacity for bearing shear de-

formation, unlike those of the other models ( W AB1 , W AB2 and W G1 ).

As the shear angle increases, the SEFs constructed by the different

approaches exhibit diverse concavity. Two possible wave separa-

tion modes can be distinguished, which are bounded by the lines

with respect to W NH1 and W NH2 . Evidently, this “mode separation”

is due to the differences in the refraction properties of the P-waves.

5. Numerical validations 

To validate the theoretical results in Section 4 , numerical sim-

ulations have been performed by a two-step finite element model

using the software COMSOL Multiphysics. In the first step, the fi-

nite deformation of the hyperelastic material is calculated using

the solid mechanics module. Then, the deformed geometric config-
ration, together with the deformation gradient F , is imported into

he second step in order to simulate the linear elastic wave mo-

ion governed by Eq. (9) . In this step, the weak form PDE module

s applied to deal with the asymmetry of the elastic tensor. 

Consider a square hyperelastic material with the side

ength l = 0.12 m and the material parameters λ= 4.32MPa,

= 1.08MPa and ρ = 1050 kg/m 

3 . By applying the displacement

eld U y = ( x + 0.6)/30 m to the model, a homogeneous simple-

heared deformation can be obtained with the shear angle γ
atisfying tan γ = 1/3. As illustrated in Fig. 1 , on the left side of

he square, a P-wave beam and an S-wave beam are normally

nput at the same position. Both the incident waves are set with

he maximum amplitude as u = 1 × 10 − 3 m, and with the angular

requencies of the S-wave and the P-wave being ω S = 0.3 MHz and

 P = 12.9 MHz, respectively. 

In general, the results of the numerical simulations are in excel-

ent agreement with those obtained from theoretical analyses. The

otal displacement fields of the P- and S-waves propagated in ma-

erial W NH1 and W NH2 are illustrated in Fig. 6 (a) and (b), respec-

ively. Comparing these two figures, it is clearly evident that the

-waves have similar refraction angles, whereas the P-waves ex-

ibit the opposite behavior. To better observe quasi wave modes in

aterial W NH2 , the x- and y-components of the displacement field

re illustrated in Fig. 6 (c) and (d), respectively. The small x- (or y-)

isplacement on the S- (or P-) wave path (shown in the insets in

ig. 6 (c) and (d)) clearly demonstrates the polarization of the wave
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Fig. 3. Elastic waves propagation and refraction in simple-sheared hyperelastic materials with the SEFs of W NH1 , W G1 and W AB1 . (a) The slowness curves of the elastic waves 

propagating in the hyperelastic materials with the SEFs of W NH1 , W G1 ( J m = 10) and W AB1 ( N = 1), (b) is the same as (a), but for W NH1 , W G1 ( J m = 20) and W AB1 ( N = 3). In both 

(a) and (b), the normalized initial parameters are λ= 4, μ= 1 and ρ= 1, the shear angle is γ = arctan(1/3), (c) the refraction angles of the elastic waves with different 

material compressibility λ/ μ ∈ (0.5, 10] for W NH1 , W G1 ( J m = 10) and W AB1 ( N = 1), respectively. The initial mass density is ρ= 1, the shear angle is γ = arctan(1/3) and the 

wave direction is φ = 0, (d) the angle between refracted P- and S-waves with different material constants J m and N . The normalized initial parameters are λ= 4, μ= 1 and 

ρ= 1, the shear angle is γ = arctan(1/3), and the wave direction is φ = 0. 

Fig. 4. Elastic waves propagation and refraction in simple-sheared hyperelastic materials with the SEFs of W NH2 and W AB2 . (a) The slowness curves of the elastic waves 

propagating in the hyperelastic materials with the SEFs of W NH2 and W AB2 ( N = 1), (b) is the same as (a), but for W NH2 and W AB2 ( N = 3). In both (a) and (b), the normalized 

initial parameters are λ= 4, μ= 1 and ρ= 1, the shear angle is γ = arctan(1/3), (c) the refraction angles of the elastic waves with different material compressibility λ/ μ ∈ 
(0.5, 10] for W NH2 and W AB2 ( N = 1). The initial mass density is ρ= 1, the shear angle is γ = arctan(1/3) and the incident angle is φ = 0, (d) the angle between refracted P- and 

S-waves with different material constant N . The normalized initial parameters are λ= 4, μ= 1 and ρ= 1, the shear angle is γ = arctan(1/3), and the incident angle is φ = 0. 
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Fig. 5. The wave separation angle between refracted P- and S-waves with respect 

to different shear angle γ . The shaded areas I and II represent two possible wave 

separation modes. The normalized initial parameters are λ= 4, μ= 1 and ρ= 1, the 

shear angle is γ = arctan(1/3), and the wave direction is φ = 0. J m = 10 for W G1 , and 

N = 1 for W AB1 and W AB2 . 
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propagation. As expected, no similar result can be observed in ma-

terial W NH1 . 

The distributions of the displacements on the right boundary of

the materials (the green line in Fig. 6 (a) and (b)), are illustrated

in Fig. 7 . Both the P- and S-wave fields, as shown in Fig. 7 (a) and

(b), are distributed on the right side of the auxiliary line denoting

the position of the incident wave. On the contrary, in Fig. 7 (c) and

(d), the P- and S-wave fields are distributed in different sides, in-

dicating the property of negative refraction. With the verification

of some other SEFs, i.e. the exponentiated Hencky-logarithmic en-

ergy ( Lankeit et al., 2015 ) as discussed in the Supplementary Ma-

terial, we therefore hypothesize that such negative refraction is a

common feature for the SEFs constructed by Approach II. More-

over, in Fig. 7 (a), W AB1 and W G1 demonstrate minor perturbations

of the wave fields for small material constants. The perturbations

reduce to the same level as that of W NH1 for larger material con-

stants, as shown in Fig. 7 (b). These findings recall the results in

Section 4 where the pure mode propagation property is unique

for W NH1 , and once again confirmed the similar refraction behav-

ior among W NH1 , W AB1 and W G1 with large material constants. For

the SEFs constructed by Approach II, however, the perturbations
Fig. 6. Displacement fields in hyperelastic materials under simple shear. (a) Total displac

same as (a), but for W NH2 . Fig. (c) and (d) are the corresponding displacement componen

figure legend, the reader is referred to the web version of this article.). 
re always present regardless of any SEF and material constants, as

hown in Fig. 7 (c) and (d). 

. Discussion and conclusion 

In this work, we have investigated the propagation and refrac-

ion of elastic waves in pre-deformed hyperelastic materials with

ifferent SEFs. By conducting both theoretical and numerical analy-

es, significantly different results can be found for the models con-

tructed by the two SEF extension approaches. The variety of qual-

tatively different wave propagation behaviors gives us the oppor-

unity to design novel architected materials with exotic functional-

ties. 

In particular, we have discovered that W NH1 exhibits pure mode

ropagation of elastic waves when the material is subjected to pre-

eformation. Such a behavior is anomalous for hyperelastic materi-

ls and therefore, can be beneficial for the manipulation of elastic

aves on the basis of Hyperelastic Transformation theory ( Parnell,

012; Parnell et al., 2012; Chang et al., 2015 ). It is also worth not-

ng that W AB1 and W G1 with relatively large material constants

ave similar wave behaviors as that of W NH1 , and can also ma-

ipulate S-waves, albeit not as accurately as W NH1 . 

On the separation of P- and S-waves, the SEFs constructed by

pproach I and II have their own merits. The elimination of dealing

ith polarization makes W NH1 more efficient at transmitting and

eceiving elastic waves without energy loss. On the other hand,

EFs constructed by Approach II have the advantage of large sep-

ration angles, which can be crucially important for some small-

cale applications. The effects of material compressibility, material

onstant and shear angle on the separation angle were also inves-

igated. The results demonstrated that for the SEFs constructed by

pproach I, the higher the material incompressibility is, the larger

he separation angle is, which is contrary to the SEFs constructed

y Approach II. Moreover, for all the SEFs, larger wave separation

ngles can be achieved using either smaller material constants or

arger shear angles. 

This work also promotes an interesting and challenging di-

ection for material fabrication. With the development of mod-

rn chemical synthesis processes ( Chen et al., 2017 ), more elabo-

ate theory and methodology are needed to precisely fabricate a
ement field in simple-sheared neo-Hookean material with the SEF of W NH1 , (b) the 

ts u x and u y with Fig. (b). (a) (For interpretation of the references to color in this 
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Fig. 7. Total displacement on auxiliary segments (green lines in Fig. 6 ) for the different cases. The purple lines denote the position of the horizontal incident waves. (a) (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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aterial based on the criteria of a particular SEF. Only in this way

an we freely take advantage of the distinguishing features among

ifferent SEFs. 
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