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Abstract
Inspired by the morphology and material composition of spider capture silk, we report a one-dimensional (1D) bead-chain 
phononic lattice (BCPL) that is lightweight and possesses tunable bandgaps. Among the mechanical parameters of the stress-
free structure, we demonstrate that the width and midfrequency of the bandgaps depend mainly on the shear modulus and 
the mass density of the beads, while the axial pre-stretching exhibits a flexible and appreciable bandgap tunability. Based on 
this, mimicking the local morphology of the orb-web, we subsequently propose a two-dimensional (2D) BCPL with the 1D 
BCPL as components. Numerical simulations verify its wave filtering and directional transmission capabilities, which are 
regulated by tensile deformation. This work is expected to shed some light on the design and development of lightweight 
tunable elastic wave modulation devices.
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1  Introduction

Phononic crystals (PCs) [1–3] have aroused considerable 
research interest due to their ability to tailor the propagation 
of acoustic/elastic waves, and particular attention has been 
paid to PC bandgaps, i.e., the range of frequencies where 
waves are prohibited. Efforts have been made to modu-
late the PC bandgap properties (e.g., bandwidth and mid-
frequency), which facilitate a wide range of applications, 
including waveguiding [4, 5], energy harvesting [6, 7], and 
vibration isolation [8, 9].

The bandgaps of PCs depend on their formation mecha-
nisms [1, 10, 11] and are closely related to the structural 
and material compositions of primitive cells. Ever since PCs 
were proposed, various structural configurations [12, 13] 
and material combinations [14, 15] have been consistently 
explored for the dedicated design of bandgap frequencies 
or to broaden the bandgaps. Recently, architected lattice 
structures [16–19] have opened an avenue for lightweight 

phononic lattices (PLs). The spatially periodic networks 
of structural elements (e.g., beams, bars, and shells) yield 
high porosity with novel wave phenomena [12, 19–22] not 
found in conventional PCs. In addition to weight efficiency, 
the designed structure also demands bandgap tunability to 
accommodate multiple working scenarios and requirements. 
A feasible solution involves applying mechanical stimuli 
[15, 23–27], which change the PL’s effective material prop-
erties and sometimes the geometry configuration in a revers-
ible manner without additional requirements for the material 
composition (e.g., without thermal, magnetic, or electrical 
responses). In particular, the PLs with soft (i.e., highly 
deformable) phases [25, 28] have demonstrated robustness 
in modulating bandgaps with finite pre-deformation.

However, many biomaterials and structures in nature, 
such as the spider webs [29–33], honeycomb [34], stem tis-
sue of aquatic plants [35], and cochlea [36] have been of 
great interest due to their remarkable elastodynamic perfor-
mance. An orb-web is a mechanically stable construction 
with a prestressed frame and threads (radial and capture silk) 
that appears to be extraordinarily weight-efficient and stable 
at different scales [37]. Notably, the periodic arrangement 
of vertically intersecting radial and capture silks facilitates 
directional signal transmission and makes the orb-web serve 
as an “eye” for a spider to perceive the external environment 
accurately [38, 39]. Additionally, the capture silk renders 
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a unique periodic bead-chain appearance consisting of a 
thread with uniformly distributed glue droplets [40–42] 
(Fig. 1a). The elastic modulus of the chain is about 10 to 100 
times larger than that of the bead, whereas the densities of 
the two components are of the same order [43]. This type of 
material and structural configuration strongly suggests that 
the capture silk and the orb-web made of this substance are 
natural PLs that contribute to hindering the circumferential 
propagation of elastic waves in the web.

For such ideal bionic design exemplars, morphological 
mimicry is straightforward, whereas revealing the mecha-
nisms behind their dynamical properties requires careful 
analysis. On the one hand, in terms of the droplet and silk’s 
material, they exhibit different compositions from conven-
tional 1D PL that designing the desired bandgaps usually 
requires the introduction of materials with high relative 
density and modulus as a resonant unit or scatterer [14, 
44–47]. Thus, exploring the unique material composition 
(similar low densities and vastly different moduli) is essen-
tial for understanding their biological function and guid-
ing the design of related structures. On the other hand, the 
prestress distributed in the silk is generally considered to 
maintain structural stability. However, when these silks are 
regarded as a PL, the effect of prestress on its elastodynamic 
characteristics, especially the wave propagation character, 
such as bandgap, needs to be further clarified. As the goal 
of this paper to address, we summarize the following issues: 
what do the material and structural properties contribute to 
the capture silk and orb-web’s wave propagation? How does 
prestressing affect these highly deformable structures and 
thus elastic wave propagation?

To clarify the questions, in this study, we construct a 1D 
bead-chain phononic lattice (BCPL) inspired by spider cap-
ture silk and explore its elastic wave propagation through 
numerical simulations. The influence of the mechanical 
properties of the bead and chain on the band structure is 
carefully analyzed for the specific structural configuration, 
which demonstrates that the BCPL’s bandgap properties are 
dominated by the bead’s density and shear modulus. Based 

on the Small-on-Large theory [48], we also show that finite 
prestress can modulate the band structure and broaden the 
bandgaps. In addition to this, we propose a 2D BCPL with 
the 1D BCPL as a critical component by imitating the orb-
web’s local morphology. Numerical simulations illustrate 
that the prestress is a robust mechanism for switching the 
bandgaps on and off and tuning features such as wave-filter-
ing and directional transmission on demand.

The rest of this paper is arranged as follows. The model 
description of the BCPLs and the method for the numerical 
simulations are presented in Sects. 2, 3, respectively. The 
band structures of the 1D and 2D BCPLs and the influence 
of the material parameters and pre-stretching on them are 
analyzed and discussed in Sect. 4. The concluding remarks 
are discussed in Sect. 5.

2 � Model description

2.1 � The one‑dimensional bead‑chain phononic 
lattice

We exploit the essential structural characteristics of typi-
cal spider capture silk (Fig. 1a) and consider a 1D BCPL 
consisting of uniformly distributed “beads” strung together 
with a “chain,” in which the term “1D” refers to both the 
unidirectional periodicity and the unidirectional elastic wave 
propagation of the BCPL. We take the 2D planar geometry 
(Fig. 1c) of the silk and focus on the wave propagation with 
the plane-strain assumption. This means that the model cor-
responds to a thin-walled phononic plate [49] that extends 
infinitely along the out-of-plane direction. In contrast, for 
a 3D bead-chain phononic structure with an out-of-plane 
scale much smaller than its length, the wave propagation 
can be described by an identical 2D model, but with the 
assumption of plane-stress. In this context, the research 
method described in this work is also applicable provided 
that a material parameter substitution is performed to obtain 
the plane-stress solution from the plane-strain problem [50]. 

Fig. 1   Schematic diagrams of 
the 1D BCPL. a A photomicro-
graph of spider capture silk. b 
and c are the primitive cell and 
the supercell of the 1D BCPL. 
The boundary conditions 
applied in order to calculate the 
band structure and transmission 
spectrum of the 1D BCPL are 
labeled in b and c, respectively
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Here we only consider the longitudinal and transverse modes 
and ignore the torsional mode because the former two, com-
pared to the latter, are more convenient and thus more widely 
utilized in applications such as nondestructive testing [51].

The primitive cell of the 1D BCPL is shown in Fig. 1b. 
Referencing real silk, the width and length of the “chain” 
are r = 1.3 �m and a = 25 �m , while the bead is consid-
ered an oval depicted by a sequence of cubic Bézier curves. 
Among the various engineering materials that exhibit simi-
lar mechanical properties to the silk components, we select 
melt-processible rubber as the chain [52], while hydrogel 
with a similar density but a significantly different modu-
lus [53] is selected as the bead. Therefore, the (initial, or 
linear) Lamé constants and mass densities of bead and 
chain are set to be �0b = 0.29 MPa,�0b = 0.07 MPa , and 
�0b = 1.06 g /cm3 , and �0c = 4.29 MPa , �0c = 1.07 MPa , and 
�0c = 1.2 g /cm3 , respectively. Among various hyperelastic 
models, the 2D variant of the compressible Arruda–Boyce 
strain energy function [54],

is util ized for which it  demonstrates supe-
r ior i ty  in  descr ibing the  mechanical  behav-
ior of rubber [55] and hydrogel [56]. In Eq.  (1), 
C

1
= �

/(

1 + 2∕5N + 44∕175N2 + 152∕875N3 + 834∕67375N4
)

 
is derived according to the rules [57] of W(� = �) = 0 , 
�W(� = �)∕�� = 0  a n d  �2W(� = �)

/

����

= ��ij�kl + ��ik�jl + ��il�jk  . I1 is the first invariant of the 
right Cauchy–Green tensor and J is the volumetric ratio. 
N  is a material constant denoting a measure of the limit-
ing network stretch, and we set N = 5 for both chain and 
bead as it provides a good fit to the existing experiments 
[58] on rubbery materials. In this model, the viscosity of the 
material is not considered since several works [15, 59] have 
demonstrated that material loss will not cause a qualitative 
change in the band structure, but some slight band shifts in 
a soft system with high porosity but some slight band shifts.

2.2 � The two‑dimensional bead‑chain phononic 
lattice

An orb-web is mainly composed of radially distributed 
threads without any “beads” on them and a capture-spiral 
approximately perpendicular to them, thus forming an 
axisymmetric structure with local orthogonality and cir-
cumferential periodicity (Fig. 2a). In addition, radial silk is 
thicker and stiffer than capture silk for the structural support 
and directional transmission of wave signals. The 2D BCPL 
considered in this work imitates the web’s local morphology 
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but ignores the structure’s radial gradient and presents a rec-
tangular lattice (Fig. 2c) with periodicity in both orthogonal 
directions. Additionally, to make the wave behaviors in the 
two principal directions similar, we utilize the 1D BCPLs as 
the horizontal components and those without beads as the 
vertical counterparts.

The primitive cell of the 2D BCPL is shown in Fig. 2b. 
With the length and the width set to be l = 8a and h = 2a , 
respectively, the geometric and material parameters of the 
local components are identical to those of the 1D BCPL.

3 � Methods for numerical simulations

The wave propagation behaviors of both BCPLs are simu-
lated with COMSOL Multiphysics.

3.1 � The band structure and the transmission 
spectra of the 1D BCPL

The band structure of the 1D BCPL is obtained using the 
eigenfrequency analysis of the solid mechanics module, with 
the Floquet–Bloch boundary conditions being imposed at 
the left and right boundaries of the primitive cell (Fig. 1b). 
The primitive cell is discretized by a triangular mesh with a 
quadratic displacement shape function, and the mesh quality 
(characterized by the skewness) is guaranteed to be above 
0.6. Given the wavenumber kx ∈

[

0, �∕a
]

 in the Γ − G 
direction, twelve eigenvalues are calculated for the band 
structure in the frequency range of [0, 0.9] MHz . To distin-
guish the propagation modes, the polarization factor [60] is 
defined as p = ∫ u2

1
ds
/

∫
(

u2
1
+ u2

2

)

ds , in which the integral 

Fig. 2   Schematic diagrams of the 2D BCPL. a A magnified view 
of the local morphology of a typical orb-web [41]. b and c are the 
primitive cell and supercell of the 2D BCPL. d is the first irreducible 
Brillouin zone of the primitive cell. The boundary conditions applied 
in order to calculate the band structure and wavefield of the 2D BCPL 
are labeled in b and c, respectively
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takes over the unit cell, and u1 and u2 are the displacements 
along the x-direction and the y-direction, respectively. is the 
area element. In this fashion, p = 1 and p = 0 correspond to 
the P- (longitudinal) and S- (transverse) modes, respectively, 
while the other cases correspond to the coupled modes.

A parametric sweep is performed in the numerical sim-
ulations of the 1D BCPL to explore the influence of the 
material parameters on the band structure, with the Lamé 
constants of the chain and bead ( �c , �c , �b , and �b ) defined 
to be � ∈ [1, 100] times larger than that of initially provided, 
and the mass densities of the chain and bead ( �c and �b ) set 
to be in the range of � ∈ [0.248, 5] g

/

cm3 and to vary lin-
early with � . We sweep one or two of the six material param-
eters in one simulation and keep the rest as initial values. 
Subsequently, the bandwidths and mid-frequencies of the 
complete and incomplete bandgaps are extracted to analyze 
their evolution with different parameters.

The transmission spectra are calculated with the same 
module utilized for a supercell with eight primitive cells 
in frequency domain analysis, as shown in Fig. 1c. The left 
boundary of the supercell is set to be a wave source that gen-
erates harmonic elastic waves of the P-modes, S-modes, or 
coupled modes. The right boundary of the supercell is set to 
be an output terminal. The transmission coefficient is defined 
as T = 20 lg

(

uout∕uin
)

 , with uin and uout being the integrated 
total displacements on the input and the output terminals, 
respectively. The transmission spectra are calculated with 
the wave source frequency of [0, 0.9] MHz.

3.2 � The band structure and the steady‑state 
wavefield of the 2D BCPL

The simulation setup for the band structure of the 2D BCPL 
is the same as that of the 1D BCPL, except that we impose 
Floquet–Bloch boundary conditions around the primitive 
cell to obtain the dispersion relationship at all the edges of 
the first irreducible Brillouin zone (Fig. 2d) with the path 
Γ − G −M − R − Γ . With the corresponding wavenumber 
in the path, 100 eigenfrequencies are searched and the band 
structures are plotted in [0.2, 0.4] MHz.

Correspondingly, the steady-state wave field in a 2D 
BCPL consisting of 9 × 3 primitive cells is calculated in 
the frequency domain. In the simulation, we apply fixed 
constraints on the periphery of the finite structure. A point 
wave source (Fig. 2c) is imposed at the center to generate 
P-, S- or coupled wave modes, which is achieved by specify-
ing the displacement components of a tiny circumference, 
i.e., u1 = A cos(�t), u2 = A sin(�t) for the P-wave and 
u1 = −A sin(�t), u2 = A cos(�t) for the S-wave. Given the 
excitation amplitude of A = 0.02 �m at the corresponding 
frequency, the steady-state displacement field distribution is 

obtained and multiplied by the amplification factor of 300 to 
obtain intuitive results.

3.3 � Elastic wave behavior of pre‑stretched BCPLs

We employ the Small-on-Large theory to analyze the lin-
ear elastic wave propagation in finitely stretched BCPLs. 
In the theory, a finitely pre-deformed hyperelastic medium 
is considered to be a stress-free effective medium, while it 
is assumed that the small-amplitude wave motion does not 
affect the effective properties. Specifically, for a hyperelastic 
material with the strain energy density, W the effective mate-
rial parameters after deformation can be expressed as [48]

where Cijkl = �W
/

�Fji�Flk and �0 represent the initial elastic 
tensor and the density, and Fij and J = det(Fij) represent the 
deformation gradient and its determinate, respectively.

A two-step model [50, 54] is utilized in the numerical 
simulations based on the above theory. First, the finite defor-
mation of a primitive cell of the BCPLs is calculated using 
the nonlinear quasi-static analysis with the solid-mechan-
ics module. Second, with the deformed geometry and the 
deformation gradient that are obtained in the first step 
being imported, the band structures, transmission spectra, 
or steady-state wavefields of the BCPLs are determined by 
using the weak-form PDE module with the corresponding 
boundary conditions.

4 � Results and discussion

4.1 � Complete and incomplete bandgaps of the 1D 
BCPL

Figure 3a displays the band structure of the 1D BCPL with 
the initial material parameters and without the pre-stretch in 
the frequency [0, 0.9] MHz . The polarization distinguishes 
the propagation modes of different branches, allowing the 
identification of incomplete and complete bandgaps. It is 
shown that there are three P-wave incomplete bandgaps 
( I B G s ,[0.3462, 0.6199]MHz  ,  [0.6332, 0.6757] MHz  , 
and [0.7826, 0.8125]MHz ) and three S-wave incomplete 
bandgaps ( [0.036, 0.0471]MHz , [0.1277, 0.3462] MHz , 
[0.7195, 0.7599]MHz ) in the frequencies of inter-
est. Correspondingly, two complete bandgaps (CBGs, 
[0.4383, 0.5311] MHz and [0.7599, 0.78312] MHz ) can be 
observed in the overlapping region of the two types of IBGs.

Figure 3b–d displays the transmission spectra for the 
P-, S-, and coupled harmonic waves propagating through 

(2)C̃0IjKl = J−1FIiFKkCijkl, 𝜌̃ = J−1𝜌0,
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the 1D BCPL, showing good agreement with the bandgaps 
annotated in the band structure while exhibiting an excellent 
vibration isolation capability for the BCPL.

4.2 � Effects of material parameters on the 1D BCPL

The opening, closing, and shifting of the bandgaps are 
determined by the shifting and overlapping of the disper-
sion curves in the band structure. Figure 4 shows the effect 
of the material parameters ( �c , �c , �c , �b , �b , and �b ) on the 
lowest CBG, first P-wave IBG, and second S-wave IBG (see 
Fig. 3a) of the 1D BCPL. As can be observed in Fig. 4a, d, 
both the midfrequency and the width of the lowest CBG are 
significantly affected by �c , �c , and �b . As �c increases, both 
the midfrequency and the bandgap width increase monotoni-
cally. In contrast, the midfrequency decreases monotonically 
as �c and �b increase, whereas the bandgap width increases 
and then decreases, with the maximum values exhibited in 
these cases. Figure 4b, c, e and f shows that �c has a similar 
effect for the IBGs. However, the effects of �c and �b exhibit 
a clear difference. An increase in �b lowers the midfrequency 
and bandgap width of the P-wave IBG as well as the midfre-
quency of the S-wave IBG. In contrast, a variation in �c has 
little effect on the IBGs.

Since �b has the most significant effect on the bandgaps, 
its effect on more bandgaps is further shown in Fig. 5a. As 
�b increases, in addition to the continuously broadening first 
CBG, a second CBG exists for 𝜇b > 1.2 MPa , which greatly 
broadens the bandgap width in the frequency of interest.

Above results help us to speculate spider’s wisdom 
on efficiency. For spiders, the low density of the silk and 

droplet makes their preparation easier. Due to the relatively 
low shear modulus of the beads, in which case the spider 
cleverly uses the smallest possible density to compensate 
for this deficiency (Fig. 4a, d, initial density where locates 
near the cross of the two blue lines), and results in a broader 
bandgap width. Similarly, as can be seen in Figs. 4d, e, the 
first-two bandgap widths are the largest at smaller densi-
ties. However, it should be noted that an increase in shear 
modulus increases both the width and midfrequency of the 
bandgap, so a low frequency and sufficiently wide bandgap 
requires an elaborate design of shear modulus.

For the bionic design, the common engineering materi-
als that can be found in the material parameter space are 
displayed in Fig. 5b, providing a correspondence between 
the bandgap properties and the material implementation. It 
is suggested that the position of the bandgap can be adjusted 
via the material selection of the bead component, while the 
bandgap is kept at a broad level.

4.3 � Effect of the pre‑stretching on the 1D BCPL

To explore the pre-stretching on the band structure of the 
1D BCPL, the primitive cell is applied with a specified dis-
placement of the rightward direction on its right boundary, 
with the left boundary constrained with a roller and the other 
boundaries kept free. In this deformation state, an inhomo-
geneous distribution of the deformation is presented in the 
primitive cell, as shown in an example in Fig. 6a with the 
deformation gradient F11.

Following the method provided in Sect. 3.3, the band 
structures for the nominal strain (the elongation of the 

Fig. 3   Band structure and 
transmission spectra of the 1D 
BCPL. a The band structure of 
the BCPL with initial material 
parameters and without any 
pre-stretch. The polarization 
distinguishes the propagation 
modes corresponding to the dif-
ferent branches along the x-axis. 
The red and blue colors indicate 
the P-mode and S-mode, respec-
tively, whereas the other colors 
indicate the coupled modes. 
b–d Transmission spectra for 
P-, S-, and coupled harmonic 
wave sources. In a–d, the IBGs 
for the P-wave and the S-wave 
are shaded in red and blue, 
respectively, while the CBGs 
are shaded in cyan
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chain divided by its original length) � = 0.1, 0.2, 0.3 can be 
obtained, as shown in Fig. 6b–d. The figure clearly exhibits 
that the bandgap evolution is governed by the frequency shift 
of branches of different propagation modes. Meanwhile, a 
frequency shift pattern in that the P-polarized branches gen-
erally move to lower frequencies, whereas the S-counterparts 

move upward more significantly can be observed. The mech-
anism for the frequency shifts of different branches can be 
explained [50] by the competition between changes in the 
geometry configuration (mainly the current length of the 
primitive cell) and that in the effective material parameters 
(i.e., the instantaneous Young's modulus and shear modulus 

Fig. 4   Influence of material parameters on CBG and the IBGs of 
the 1D BCPL. a, d, b, e, and c, f are the bandgap midfrequency and 
bandgap width of the lowest CBG and the lowest IBGs for the P-wave 

and S-wave. The initial values of bead and chain’s density ( �0b, �0c ) 
are marked by arrows in a and b, while the initial moduli are corre-
sponding to � = 1

Fig. 5   a Influence of �
b
 on the first and second CBGs. b the color map of the mid-frequency of the first CBG. The common engineering materi-

als corresponding to the material parameter space are displayed in (b)
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of the structure): the increase in the length of the structure 
shifts both modes toward lower frequencies. Conversely, an 
increase in the effective material parameters shifts the fre-
quencies of the two modes upward in diverse degrees. Typi-
cally, the increase in the effective Young's modulus (which 
determines the frequencies of the P-modes) is smaller than 
that of the effective shear modulus (which governs the fre-
quencies of the S-modes) for the same degree of stretching, 
resulting in the above frequency shift pattern.

The evolution of the lowest P-wave IBG, S-wave IBG, 
and CBG with the increase of the pre-stretching is shown 
in Fig. 6e. Both the frequency and the width of the lowest 

S-wave IBG up-shift monotonically with the pre-stretch. 
Furthermore, with the upper boundary almost unchanged, 
the lower boundary of the first P-wave IBG shifts mono-
tonically to lower frequencies as the pre-stretch increases. 
The dramatic frequency shift of the S-polarized branches in 
this P-wave IBG creates an intricate evolution of the CBGs. 
Nevertheless, the CBG generally gradually broadens and 
stabilizes with the increasing pre-stretching.

Fig. 6   Band structures of the pre-stretched 1D BCPL. a Deformation 
state and the corresponding distribution of the deformation gradient 
F11 of the 1D BCPL with pre-stretching. b–d are the band structures 
for the nominal strains � = 0.1 , 0.2 , and 0.3 . The color of the branches 

represents the dimensionless polarization as described in Fig.  3. e 
The evolution of the first P-wave IBGs, S-wave IBGs, and CBGs with 
the increase of the pre-stretching

Fig. 7   Band structures of the 2D BCPL (unit cell and the correspond-
ing Brillouin zone are shown in Fig.  2b, d. a and b are the band 
structures of the BCPL with the nominal strains � = 0 and 0.1 in the 
x-direction. The color of the branches represents the dimensionless 

polarization. The deformation state and the corresponding distribu-
tion of the deformation gradient F11 of the 2D BCPL with pre-stretch-
ing are shown in the inset of (b)
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4.4 � Elastic wave propagation in the 2D BCPL subject 
to pre‑stretching

The influence of the pre-deformation of the 2D BCPL is 
shown in Fig. 7. For the primitive cell shown in Fig. 7b, we 
calculate the band structure in the undeformed and horizon-
tally stretched (Fig. 7a, � = 0.1 ) states, as shown in Fig. 8a, 
b.

For the undeformed 2D BCPL, many IBGs are exhib-
ited in different intervals, allowing the design of direc-
tional transmission for specific elastic wave modes. For 
instance, the P-mode only exists in the ΓG and MR inter-
vals at 0.32 MHz , whereas that of the S-counterpart is pre-
sent in the other two intervals, as shown in Fig. 7a. The 
corresponding wavefield simulations for the P-, S-, and 
coupled point source applied at a node of the lattice are 
displayed in Fig. 8a–d, which not only demonstrates the 
directional transmission of the P-mode and S-mode in the 
horizontal (Fig. 8a) and vertical directions (Fig. 8b) but 
also indicates the mode separation for the coupled modes 
(Fig. 8c).

With the presence of the pre-stretch, two CBGs appear 
at [0.31, 0.34] MHz and [0.35, 0.37]MHz that are separated 
by a P-wave branch. In this case, the wavefield simula-
tion demonstrates a contrasting difference to that shown in 
Fig. 8c. The coupled modes decay rapidly and cannot propa-
gate in any direction in this type of horizontally elongated 

and prestressed structure, demonstrating the tunable wave-
filtering capability of the 2D BCPL. Although recent work 
has systematically resolved Bloch wave propagation in a 
similar but simpler 2D soft lattice [22], fundamental mecha-
nisms about the formation and evolution of band gaps under 
pre-stretching remain unclear due to the complexity of 2D 
BCPL. Related issues deserve systematic and independent 
study in the future.

5 � Conclusion

In this paper, inspired by the morphology and material 
composition of spider capture silk, we present a light-
weight 1D BCPL that possesses tunable bandgaps due 
to pre-stretching P-wave and S-wave IBGs and CBGs are 
observed in the band structure of the BCPL and verified 
by the transmission spectra. Through the analysis of the 
material composition, we demonstrate that the bandgap 
mid-frequencies and bandwidths can be effectively regu-
lated by the shear modulus and the mass density of the 
bead. In addition, we give possible reasons for such careful 
design of the material parameters of the spider: the lowest 
possible density ensures a lightweight structure for the 
fabrication of the spider web, while compensating for the 
low shear modulus, which allows for a radial bandgap in 

Fig. 8   Wavefield simulations of the 2D BCPL. a–c are the wavefields of the stress-free 2D BCPL with P-, S-, and coupled point sources applied 
in a node of the lattice. d is the same as c but the 2D BCPL is subject to pre-stretching � = 0.1 in the x-direction
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the web and thus contributes to the directional transmis-
sion of the vibration signal.

It is also shown that the finite pre-stretching significantly 
shifts the propagation modes distinctly and thus substan-
tially broadens the bandgap. We also propose a 2D BCPL 
by imitating the local morphology of an orb-web and with 
the 1D BCPL as a component. Anisotropic bandgaps ena-
ble the structure to have directional transmission and mode 
separation of the elastic waves. The unidirectional finite pre-
stretching produces a complete bandgap in the BCPL that 
permits features such as tunable wave-filtering.

The proposed 1D BCPL and 2D BCPL are structurally 
simple and easy to manufacture. Additionally, the paramet-
ric analysis provides essential guidance for the selection of 
materials. The BCPL’s design will provide new opportuni-
ties to design and develop lightweight tunable elastic wave 
modulation devices, potential applications such as the vibra-
tion and noise reduction of the micro-electromechanical sys-
tems, directional propagation, and the wave-mode splitting 
of the elastic waves.
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