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ARTICLE INFO ABSTRACT
Communicated by Sergio De Rosa In this study, the in-plane Bloch wave propagation in a finitely stretched square lattice is
investigated numerically and theoretically. Precisely, the elastic band diagram is calculated for an
Keywords: infinite periodic structure with a cruciform hyperelastic unit cell under uniaxial or biaxial tension.
Elastic wave Meanwhile, an elastodynamic tight-binding model is proposed to investigate the formation and
Ba“dgaP evolution of the band structure. In said lattice, the finite stretch was found to not only tune the
Soft lattice . . . -
Bloch wave symmetry of the band structure but also purify the elastic waves into easy modes. The uniaxial

stretch exhibits the opposite impacts on the evolution of two easy modes, while the effect of the
biaxial stretch is equated with the superposition of the uniaxial stretches in the two tessellation
directions. The mentioned effects on the band structure could be attributed to the competition
between the effective shear moduli and lengths for different beam components. As a result, the
finite stretch could tune the directional elastic wave bandgap of the soft lattice, and the broadest
bandgap could be anticipated in an equi-biaxial stretch. This study may shed some light on the
design and implementation of elastic wave control devices with weight efficiency and tunability.
It also reveals that the theoretically predicted flat bands did not exist in the numerical calcula-
tions, a difference between the physical system and the corresponding simplified theoretical
model.

Finite deformation

1. Introduction

Lattice materials [1] are defined as the spatially periodic networks of structural elements (e.g., beams, bars, and shells). With a
highly ordered construction at different scales, such systems outperform conventional (dis-order) ones in mechanical [2-5], thermal
[6-8], and other properties [9-11]. These optimized mechanical and functional materials appear extensively in nature [12-14], and
meanwhile, are artificially manufactured and increasingly used as the weight-efficient structural components in diverse applications
[15-19].

Over the past two decades, lattice materials have aroused considerable attention for their unique elastodynamic properties orig-
inating from the periodic arrangement and variety of microstructures. As a class of phononic crystals or metamaterials, these materials
have been commonly employed to tailor the propagation of mechanical waves. Inspired by this topic, the novel wave phenomenon of
lattice materials [20-26] and the effects of both material [27-29] and geometry [30-34] have been investigated. Thus far, the dy-
namics of lattice materials probably be considered a mature field since the governing equations and the solution techniques are
extensively studied. However, as permitted by the diversity of material and structure combination and as promoted by various
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technical requirements, many exciting characteristics remain to be explored.

For instance, if the solid phase exhibited by the lattice material is soft and highly deformable, more complex but fruitful wave
propagation behaviors can be anticipated with subject to external mechanical loading. Accordingly, the lattice turns out to be a so-
phisticated wave modulation and sensing system [35,36], which suggests significant applications (e.g., non-destructive testing and
health monitoring for flexible and morphable structures). In such a system, the mechanical loading can tense the network, and it acts as
a robust mechanism for tunability in the preparation and use of the lattice material. As demonstrated by a spider orb-web, it forms a
mechanically stable construction with taut threads [37]. The web transmits vibration signals, acting as a communication channel
during the prey capture and the courtship [36,38]. Notably, tensions in an orb-web are not evenly distributed, and they can be
controlled by a spider [37] when the web is being weaved and used (Spider jerks the radial threads to locate the prey.).

Most of the relevant works on the dynamics of soft phononic crystals and metamaterials concentrate on materials with high relative
density [39-41] or multiple phases [42-47]. Despite reports of novel or anomalous behaviors, the underlying mechanisms remain
elusive as a result of the complex material compositions and structural configurations. Even in single-phase lattices with simple ge-
ometry, such as spider webs, the wave propagation behavior under finite deformation is still poorly understood, let alone offering clear
guidelines for designing wave control systems that are lightweight, flexible, and easy to fabricate. Several issues must be addressed in
this topic, including: How does the mechanical loading simultaneously affect the effective (or instantaneous) material properties and
geometry configuration of the soft lattice, as well as how does this further influence wave propagation? What are the critical material
and geometric parameters that govern wave propagation?

To clarify the mentioned problems, this study investigates numerically and theoretically the in-plane Bloch wave propagation in a
finitely stretched square lattice and determines the effects of geometric and material properties induced by the finite deformation.
Specifically, in accordance with the Small-on-Large theory, numerical simulations are performed to examine the formation and
evolution of the band structure. An elastodynamic tight-binding model is also proposed to provide valuable estimates and elucidate the
underlying mechanisms.

The rest of this study is organized as follows. In Section 2, the model description and several theoretical backgrounds are presented
(e.g., the Small-on-Large and Bloch theories). In Section 3, the numerical and theoretical methods of examining the band structure of
the soft lattice are illustrated. In Section 4, the band structure, the effect of pre-deformation, together with the evolution of bandgaps
are illustrated. Lastly, the brief concluding remarks are drawn in Section 5.

(a) bttt (b)

Fig. 1. Schematic diagrams of the 2D soft lattice material and its unit cell. (a) and (b) represent the initial () and current (Q) configurations before
and after the finite deformation, respectively. (c) and (d) represent the unit cells of the current configuration adopted for the numerical and
theoretical analyses, respectively. The first Irreducible Brillouin Zone (IBZ) of the unit cell applied in the Bloch wave analysis is presented in the
inset of (c). The two easy wave modes are illustrated in the insets of (d).
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2. Model description and theoretical background
2.1. Model description

An infinite 2D square lattice is considered, with its initial configuration Q presented in Fig. 1(a). The unit cell is a cruciform
structure rigidly connected by four flexural beams, with the related tessellation directions (lattice basis vectors) parallel to the beams’
axes. The material of the respective beam is homogeneous, isotropic, and soft, so it exhibits a hyperelastic constitution. In the plane-
strain assumption, the finite deformation and the incremental wave motion are constrained in the X; X, plane. The lattice’s macro-
scopic deformation is considered under the uniaxial or biaxial tensile strains in the tessellation directions for simplicity. Accordingly,
the orthogonal beams hardly affected each other during the deformation, and any possible instability induced by the compression is
avoided.

With the finite deformation, the soft lattice expanded to the current configuration Q (Fig. 1(b)), and the corresponding unit cell
emerged a cruciform with diverse arm lengths (Fig. 1(c)). Except for the joint of the beams, most areas in the unit cell exhibited a state
of uniaxial tension. In this fashion, the finite deformation could be expressed by the principal stretches (1; and 12). Furthermore, the
geometry of the current configuration could be characterized by the lengths (I,, and l.,) and widths (h,, and h,,) of the beams.

2.2. Theoretical background

To analyze the propagation of the Bloch wave in the soft lattice, some preliminary (e.g., the descriptions of finite deformation,
incremental wave motion, and the Bloch boundary condition) are presented in the following, which are essential for both numerical
and theoretical analyses.

2.2.1. Finite deformation
For a hyperelastic solid with the constitutive behavior characterized by the strain energy function W, the finite deformation makes
the material particle at X; in the reference (undeformed) configuration (Q) move to the current position x; in the current (deformed)

configuration (Q). In the absence of the body force, the deformation process satisfies the equilibrium equation, i.e.,
-f/ijj = 07 1)
where .7 = 0W/0F;; denotes the nominal (or the transpose of the first Piola-Kirchhoff) stress tensor; F;; = 0x;/dX; is the deformation

gradient (unless otherwise specified, the repeated lower index complied with the Einstein summation convention). From the rela-
tionship between stress and deformation gradient, the instantaneous elastic tensor (or tangent modulus) of the material is written as

oSy TW
= _ 2
Cpa OFy  OF;i0Fy @
Thus, Eq. (1) can be expressed as
(Cyrxix) ; = 0. 3

Since Cjj is non-linearly determined by Fy;, Eq. (3) expresses a set of non-linear partial differential equations of the second order for x;.
Specific to a particular x; (or equivalently Fj), the uniquely determined Cyy is termed as the instantaneous elastic tensor expressed in
the initial configuration. In this scenario, Cj; and F; are utilized to analyze the incremental wave motion.

2.2.2. Incremental wave motion

To examine the incremental (linear) wave motion 1; superimposed onto the finite deformation, the stress generated by the waves is
neglected, the finite prestress is equated with the instantaneous material parameters (Eq. (2) and (5)), and the waves were considered
to propagate in a stress-free effective medium. Thus, the governing equation of wave motion in the current configuration is expressed
as [48]

(E‘ijk]u]_k)v[ +fm)2uj = 07 (4)
where @ denotes the angular frequency. E‘ijkl and p are determined by pushing forward on Cyy and p (expressed in the current
configuration), respectively, [48]

Cyxt = J ' FiFaCyi, p = 17", (5)

where J = det(F;;) denotes the volumetric ratio. As opposed to Eq. (3), Eq. (4) expresses a set of linear partial differential equations of
the second order foru;.

2.2.3. Bloch boundary condition
To determine the spatial periodicity of the current configuration, a set of lattice vectors @ (s = x;,x;) are defined, so an arbitrary
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unit cell could be indexed with the vector r; = n|ag

, with ng as an integer (the underlining represents that the Einstein summation
convention is not invoked). Accordingly, the position of any point x? in a unit cell is expressed as x; = x? + r;. By complying with the
Bloch theorem, the Bloch periodicity for arbitrary space function y is defined as:

W0+ 1) = w()ehr, ©

where i denotes v —1; k; is the wave vector in the reciprocal lattice (Fig. 1(c)).
Egs. (4) and (6) usually form a definite solution problem of wave propagation in a periodic soft lattice, which underpinned the
following numerical and theoretical analyses.

3. Methods for Bloch wave analysis

In the present section, the numerical method is presented to determine the band structure of the soft lattice. Moreover, a theoretical
model is proposed to analyze the effect, together with the underlying mechanism, of the finite deformation on the Bloch wave
behavior.

3.1. Numerical (Finite Element) analysis

The numerical simulations are conducted with the finite-element (FE)-method-based software COMSOL Multiphysics. With 2D
plane-strain assumption applied, a two-step model [49,50] is adopted to analyze the finite deformation and the incremental wave
motion, respectively. First, the finite deformation of a unit cell (Fig. 1(a)) of the soft lattice, complying with Eq. (1), was calculated
through the nonlinear quasi-static analysis with the solid mechanics module. Second, with the deformed geometry (Fig. 1(c)) and the
deformation gradient, which are obtained in step one, imported, the band structure of the lattice is determined with the module of
weak-form PDE. Based on an eigenvalue analysis of Eq. (4), the band structure, i.e., the dispersion relation of elastic waves, is explored
along the edges (I' -X —M —Y —I) of the first Irreducible Brillouin Zone (IBZ, Fig. 1(c)). Detailed information about the numerical
simulations can be referred in the Supplementary Material.

3.2. Theoretical model: An elastodynamic tight-binding model

Despite the numerical simulation, a theoretical model was also built to characterize the Bloch wave propagation and, more
importantly, to qualitatively indicate the effect of finite deformation on the band structure. Thus, the unit cell was simplified as a nodal
connection of four beams under the ideal uniaxially stretch. As illustrated in Fig. 1(d), the internal node was numbered as 0, and the
peripheral nodes were numbered as 1-4, respectively. The indexes of the four beams were identical to the corresponding peripheral
nodes. Thus, {u|(s), uf(s)},i=1,2,3,4 is adopted to represent the axial and transverse displacements (relative to the beam direc-
tion) in the i - th beam, where s denotes the local axial coordinate (s = x; (or x3) fori =1, 3 (or 2, 4)) with the origin at the central
node (Fig. 1(d)).

3.2.1. Equations of motion in a single beam
For a single Rayleigh beam under the axial stretch, there exist two wave modes, i.e., the longitudinal (Primary, or P- for short) and
transverse (Secondary, or S-) modes, which are respectively governed by the one-dimensional time-harmonic wave equations [51]

Eu)"(s) + oo’ (5) = 0, @
BEu!" (5) + (B — G)u'" (s) — o’ (s) =0, ®)

where the prime represents the differentiation with respect tos. B = I/A expresses the moment of inertia divided by the cross-sectional
area. E and G are the effective Young’s and shear moduli with expressions [51]

P_C CinCan G-o Cin1Can
E=Cin—-—"",6=Chpn——=——
Com Coin

9)

in 2D problems, which measure the stiffness of a finitely stretched beam to resist incremental wave motion in P- and S-modes,
respectively. For a specific deformation state, their value can be obtained by Eq. (5). It is also worthy of note that G is equivalent to the
axial Cauchy stress in the Rayleigh beam [51]. The theoretical model ignores the irregular geometry and inhomogeneous deformation
in the unit cell that distribute near the junction. By means of compensation (or numerical correction) for this simplification, we
calculate E and G by using the deformation gradient of a beam component obtained from the numerical simulation instead of making a
rough estimate of them with the elongation of a single beam. The comparison between these two treatments can be referred in the
Supplementary Material.
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3.2.2. Boundary conditions

Twenty-four boundary conditions are required to establish a proper combination of equations of motion for each beam, which
includes the following:

a). Nine kinematic conditions at the internal node, representing the compatibility of displacement, i.e.,

11 (0) = u5(0) = 5(0) = uj(0), (p.qg=L,|l. p#q), (10)
and rotation (with rigid joint assumption), i.e.,
ui (0) =i (0) = ut (0) = uf (0); an

b). Three equilibrium conditions at the internal node, i.e.,

NA0) — Niea0) + Vi(0) — Via(0) =0, (i = 1,2, i £)) (12)
M, (0) — M5(0) + M, (0) — M, (0) = 0, (13)
where
Vo) = ~EABa” )+ (G, 7807 A 9).M05) = Eoda! ). Mi(5) = B (), (14)

denote the shear force, the axial force, and the bending moment in the i - th beam, respectively;
c). Twelve Bloch boundary conditions at the peripheral nodes, representing the periodicity of the displacement, rotation, bending
moment, and shear force. In the local coordinate system, the Bloch conditions (Eq. (6)) are expressed as:

W (0 4 ) = W () (15)
To be specific, we take ¥; = uii,uii, ,uiH,uy M, Vi, xf =—I;and ry = 2 in Eq. (15). (s = x;1 (or x2) fori =1, 3 (or 2, 4)).

3.2.3. Assembly of equations and analytical dispersion relation

With eight equations of motion (Egs. (7) and (8)) and twenty-four boundary conditions, an eigenvalue problem is formed with a
24 x 24 characteristic matrix [19]. In this study, more accurate results could be achieved by performing the numerical treatment. The
theoretical model is mainly used to reveal the underlying mechanism. However, such a huge algebraic system could be too complicated
to yield an analytical solution concise enough for qualitative analyses. As a trade-off, instead of solving the characteristic determinant
directly, the algebraic system is first degenerated into two smaller (12 x 12) systems by confining (or “binding™) the possible defor-
mation of the soft lattice into two “easy” modes. Consistent with the tight-binding model in solid physics, this degenerate model is
termed as an elastodynamic “tight-binding” model. Given the mode shapes illustrated in the insets of Fig. 1(d), the two beams with
identical orientation in the unit cell vibrated in a P- or S-mode, whereas the other two beams presented the counterpart mode. These
mentioned modes led to the identical displacement directions of the respective material point in the unit cell and are, therefore, in a
homogenization perspective, the longitudinal (P-) and transverse (S-) modes of the lattice. We refer to them as “easy” (easiest to be
excited) modes to distinguish them from the propagation modes of the beam components.

The elastodynamic tight-binding model requires the rigid joint constraint at the internal node to be relaxed to construct the
degenerated problem. Accordingly, the compatibility condition of rotation (Eq. (11)) is replaced with:

up (0) = uz (0), (16)

u (0) = ul (0). a7

In correspondence, the equilibrium of bending moment (Eq. (13)) should be replaced with:

M,(0) = M5(0), (18)
M5(0) = M, (0). (19)

Thus, under Mode I (Fig. 1(d)), the corresponding equations of motion are Eq. (7) fori =1, 3, and Eq. (8) fori = 2, 4. Moreover, the
selected boundary conditions are Eq. (10) forp = ||, ¢ = L, Eq. (12) fori =1, j =2, Eq. (15) fors =x;, i=1, 3 when ¥; = y;|| and

up , and for s = xp, i =2, 4 when ¥; = u", uiil, M; and V;, Egs. (17) and (19). The rest equations constituted the boundary value

problem under Mode II.

3.2.4. Analytical dispersion relations
By solving the two eigenvalue problems under the easy modes, the dispersion equations, describing the propagation of Bloch waves
with a frequency @ and a wave vector k; in the soft lattice, could be yielded. Under Modes I (s = x;) and II (s = x3), it yields:
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with s, t =x;, x3 and s # t, in which

2U1/7,
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Fig. 2. Phononic band structures for the soft lattice with the typical finite deformation conditions: (a) deformation free (1; = 1, = 1), (b) uniaxial
stretch (41 = 1.4, 12 =1), (c) biaxial stretch (4; = 1.4, 12 = 1.2), and (d) equi-biaxial stretch (1; = 22 = 1.3). The solid and scattered lines denote
the numerical (FE) and theoretical results, respectively. The colors in the lines indicate the magnitude of the polarization, from 0 (Mode II) to 1
(Mode I). A typical branch in I' —X interval was marked with red shading in (a), (b) and (d), respectively, to show its evolution with the deformation.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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BE, BE,

Specific to non-zero R, andQ,, Eq. (20) is rewritten as:

P () T, (k;, @)

Rlkow)  Qkw) 23)

revealing the decoupling of the horizontal and vertical beam components for any frequency w, i.e., the stretch in the s-direction only
changes the terms or parameters with subscript s, with the remaining unaffected. Whereas for Q; = 0 or R; = 0, the flat bands, i.e.,
resonance modes independent of the wave vector, were present in different edges of IBZ.

As reported in the existing study on a single soft beam [51], a sufficiently large stretch might lead to B — 0 and G — E. When B — 0,
the rotary motion of beam elements is negligible, and Eq. (8) degenerated to the identical form as Eq. (7). Thus, the dispersion relation
is simplified to a certain extent. For instance, when the beams in both directions are under large stretches, i.e., B, — 0, the band
structure (Eq. (20)) is simplified as:

2,\/5. 2, f - 21,\/3, 21,1 /5.
G5 sin ——w cos(2kl;) — cos | —— @ +1\/Epgsin| —— @ cos(2k,l;) — cos ] =0. 24)
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Fig. 3. Effect of uniaxial stretch on the band diagram in the I' —X direction. (a) and (b) represent the numerical results for the deformation applied
in the x- and x-directions. The colors in the lines indicate the magnitudes of the polarization.
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Accordingly, G — E further simplified the dispersion relation. When 55 =E, Eq. (24) presents an identical form for s = x; and x5,
which indicates an overlap of the band curves under Modes I and II.

4. Band structure of the soft lattice

In the subsequent calculations, the geometry parameters of the unit cell at initial configuration are taken as 21, = 2l,, = 10hy,, =
10hy, = 0.01 m. A hyperelastic material with compressible neo-Hookean strain energy function, i.e., [49]

W =

DI

(J = 1> — plnJ +% (tr(FyFy) —2), (25)

is considered, where ¥ and y denote the first and second Lamé constants, respectively. The initial material parameters are assumed
with the first and second Lamé constants #° = 7 MPa, u = 1 MPa, respectively, as well as the initial mass density p = 1110 kg/m>.
The mentioned parameters denote a melt-processible rubber [52]. The material damping is neglected for simplicity.

4.1. Band structure for typical finite deformation

The band structure of the soft lattice under the typical finite deformation conditions is illustrated in Fig. 2. To classify the wave
modes of each branch, the amount of polarization is defined as [53]:

2
2 ,]‘lu)ﬂ' dr (26)

P = )
f(lu«n ‘2 + ‘”n'z)dr

where the integral takes over the current configuration of the unit cell (the cyan-blue area in Fig. 1(c)), u,, and uy, represent the
displacement components (Fig. 1(c)). For the in-plane wave motion, p> = 0 or p? = 1 represent two easy modes, whereas the value
between 0 and 1 represents the coupled mode (In Figs. 2, 3, and 5, we display p? € [0.15, 0.85] in green without any distinction, which
is easy to observe). Then, the easy modes predicted with the theoretical model are also provided.

The band structure of the deformation-free lattice (1; = A, = 1) is demonstrated in Fig. 2(a). As indicated from the comparison of
the numerical and theoretical results, the theoretical model reasonably captures the essential characteristics of the propagation of
Bloch waves in the soft lattice, especially for easy modes. However, when the lattice wave propagated under the coupled mode, the
theoretical prediction slightly deviated from the numerical simulation.

The band structures of the lattice under the uniaxial (1; = 1.4, A, = 1), biaxial (1; = 1.4, 15 = 1.2), and equi-biaxial (1; = 1, =
1.3) stretches are respectively illustrated in Fig. 2(b)-(d), demonstrating that the elongation in different tessellation directions
diversely impacted the movement of the bands. As the comparison of Fig. 2(a)-(c), the proportion of the coupled modes (green curves)
in the band structure decreased significantly by the stretches, which suggests that the finite deformation could purify the wave modes

6
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Fig. 4. The effect of material (a & b) and geometrical (c & d) factors on the band structure, in which the diagrams for P- (red) and S- (blue) modes
are presented independently, and the colors represent the magnitude of the uniaxial stretch. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 5. The comparison of the band diagram in the I' —X interval under equi-biaxial stretch, obtained from numeral simulation (solid lines), Eq. (20)
(solid scatters), and Eq. (24) (hollow scatters), respectively.

(i.e., turn the coupled modes into easy ones). Note that “purify” here refers specifically to mode conversion that results from finite
stretch, as opposed to “filtering,” which is very common in phononic crystals. It also reveals that the theoretical model is more suitable
for predicting the band structure of the pre-deformed lattice than that of the undeformed one. For the equi-biaxial stretch (Fig. 2(d)),
all the branches shifted to higher frequencies than that for deformation-free lattice, and the coupled modes are localized around the
high-symmetry points.

Fig. 2 present no complete bandgaps in the frequency range of interest. However, the directional bandgaps existed under both wave
modes, and their locations moved with the applied finite deformation. Besides, it is noted that the flat band and the degeneracy points
are predicted in the theoretical model, whereas they are not present in the numerical results. In the following subsections, all the
mentioned phenomena will be discussed more specifically.

4.2. Effect of pre-deformation on the band structure

4.2.1. The effect of uniaxial stretch

To reveal the effect of finite deformation on the soft lattice’s band structure, the band diagram are drawn in I' —X interval with
uniaxial stretch A = 1 ~ 1.8 applied in x; - and x;-directions in Fig. 3(a) and (b), respectively. As revealed from the figure, the stretch
along the x;-direction decreased the eigenfrequencies under Mode I, whereas it increases the eigenfrequencies under Mode II.
However, the x,-counterpart exerted an opposite effect. Under the coupled mode, no significant regularity is observed.

The theoretical model qualitatively explains the evolution pattern. When s = x;, Eq. (24) concludes that @cy/Ej, /Px, /lx, under
Mode I and @<y / éxl /ﬁxl /L, under Mode II. As indicated from the further analysis (Supplementary Material), both é)q and [, increase

after a certain tensile deformation, while E,, and Py, remain almost unchanged. Moreover, the variation of Gy, is more significant
than that of [, . In summary, éxi and [, determine the band shift. After a stretch along the x; (or x)-direction, the eigenfrequencies

under Mode I decreased by the increment of I, (or \/E—XZ /ly,), while that under Mode II increased by the increment of 1/ Gy, /L, (or ).

The effect of the finite pre-deformation on soft lattice material involved the variations in (effective) material and geometry. To
consult their influence separately, under the uniaxial stretch (Fig. 3(a)), the band diagram is recalculated by using the theoretical
model with the initial geometric parameters and the effective material parameters after the deformation (Fig. 4). Furthermore, the
band diagram obtained using the current geometric and initial material parameters is presented as a comparison.

The diagram clearly illustrates the distinct effects of geometry and material on the two easy modes under the stretch. Moreover, the
evolution of the branches could be qualitatively explained by the tight-binding model. According to Fig. 4(a) and (b), the material
factor exerted the opposite effects on the two wave modes: Under Mode I, the non-flat bands slightly shifted to higher frequencies with

the increment of 4/Ej, /Dx,; under Mode II, however, all the eigenfrequencies, primarily affected by /Gy, /Py, » increased significantly.
However, the effect of the geometric factors is nearly identical for the two modes (Fig. 4(c) and (d)): The reduction in length L,
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decreased all the eigenfrequencies, and the variation is more significant for high-frequency branches than that of the lower ones. By
interpreting the numerical result (Fig. 3 (a)) with the mentioned mechanisms, it is concluded that the band structure evolution resulted
from the competition between material and geometric factors.

As indicated in Fig. 4(a) and (c), several anomalous bands could be perceived in the theoretical results under Mode I, including the
deformation immune bands (DIBs), the local deformation immune bands (LDIBs), the flat bands (FBs). As their names suggest, the
position of the DIB almost does not vary with the uniaxial stretch in the x; -direction, while in the LDIB, only the eigenfrequency at I is
stationary. In contrast, the dispersionless flat bands are independent of the deformation and the wave number. As indicated from the
comparison of Fig. 3(a) and Fig. 4, the theoretically predicted DIBs and LDIBs are consistent with the numerical simulations. However,
the flat bands never present in the numerical results. As a replacement, two coupled modes are generated by hybridizing the flat bands
under Mode I and the corresponding non-flat bands under Mode II. The occurrence of these anomalous bands is explained in the

Supplementary Material.

4.2.2. The effect of biaxial stretch
As impacted by the uncoupling of beam components in the orthogonal directions, the effect of a biaxial stretch was equivalent to

that of two sequential uniaxial stretches so that it could be qualitatively predicted. For instance, the movement of a representative
branch is tracked under Mode I, which is marked with red shading in Fig. 2. A horizontal stretch to 4; = 1.4 make the branch move
monotonically downward (Fig. 2(b)), except that its left end was almost stationary. Subsequently, a vertical stretch to A, = 1.2 make
the entire branch shift to higher frequencies (Fig. 2(c)).

The band diagrams of the soft lattice in I' —X interval for different equi-biaxial states (1; = 1.2 ~ 1.8) are illustrated in Fig. 5. For
comparisons, the band curves predicted by using Eq. (20) and (24) are plotted, thereby indicating that the band curves moved closer to
each other with the increase in the magnitude of stretch. They almost coincide with each other when 4, = 1, reaches1.4. It is therefore
indicated that the finite stretch weakened the rotary motion in a soft beam component. Accordingly, as a waveguide, the pre-stretched
beam behaved more like a string than a Rayleigh beam. Furthermore, Fig. 5 demonstrates the propinquity of the two easy modes
attributed to the agreement of the effective material parameters under the huge stretch. Obviously, the phenomenon could contribute
to the modulation of the directional bandgap to a broad frequency range.

4.3. The evolution of directional bandgaps under stretch

To demonstrate the effect of pre-stretch on the bandgaps, the evolution diagrams of the bandgaps in I' —X interval are drawn under
Modes I and II at different stretching states (Fig. 6(a) and (b)). In both figures, the frequency ranges occupied by the coupled modes are

(a) T
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Fig. 6. Evolution of bandgaps in I' —X edge of IBZ with different finite deformation. (a) and (b) are the bandgap evolution under Modes I (red) and II
(blue). (c) is the same as (a) and (b) but under equi-biaxial stretch. The gray areas in (c) correspond to the elastic wave bandgaps, which is the
intersection of the red and blue ones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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passbands.

Under Mode I (Fig. 6(a)), the uniaxial stretch in the x;-direction narrowed several (the third and fourth) of the bandgaps without
affecting their center frequencies, while the x;-counterpart simultaneously increases the bandwidths and center frequencies. As
opposed to Mode I, Mode II (Fig. 6(a)) has more bandgaps in this interval. Moreover, the uniaxial stretch in either direction signifi-
cantly increase the bandwidth, and the center frequencies slightly or significantly increase for the stretches in x;- and x,-directions,
respectively. The boundaries of different bandgaps are significantly close under a huge stretch, thereby forming an ultra-wide bandgap
with several narrow passbands.

Besides, the broadest in-plane elastic wave bandgap (the bandgap for both modes) appears in the case of the equi-biaxial stretch. As
indicated in Fig. 6(c), the bandgaps under Mode I widened dramatically with the increase in the stretch. The two lowest bandgaps for
both modes are consistent, thereby forming the widest elastic wave bandgaps at a high strain level. The mentioned phenomenon can be
explained as the convergence of the dispersion curves of the two modes under a large stretch (Eq. (24) and Fig. 5(d)).

5. Conclusion and discussion

In brief, this study investigated the propagation of Bloch waves in a pre-stretched square lattice material. In this regard, the wave
behavior and its influence by the finite deformation are determined by numerical simulations, while an elastodynamic tight binding
model reveals the mechanism underlying the phenomena. The pre-stretched square lattice has been found to evidence the following
features in terms of wave dynamics.

e In-plane elastic waves primarily propagate in two easy modes and the pre-stretch purifies the wave modes and localizes the coupled
modes to the high-symmetry points.

e As the uniaxial pre-stretch increased, the two easy modes demonstrate monotonous but opposite movements. The effect of biaxial
stretch falls to that of two uniaxial stretches in the tessellation directions.

e The decisive geometric and material parameters that govern the band movement represent the beam component’s length and the
effective shear modulus, respectively.

e The broadest directional elastic wave bandgaps appeared for the high level equi-biaxial stretch.

Though the complete bandgap does not exist in the mentioned soft lattice, it could be implemented by introducing resonance
[54,55] or Bragg scattering [56] mechanisms. In addition, the comparing numerical and theoretical calculations indicated the dif-
ferences between the physical and simplified theoretical models. It is therefore demonstrated that the theoretically predicted flat
bands, the characteristics showing promising applications in topological acoustics [57], were not presented in the numerical calcu-
lations. However, it is not excluded that such characteristics can be determined by means, e.g., tuning the slenderness of the beam
components [20]. It is worth mentioning that, in this work, the material damping is neglected for simplicity. A rough estimate (in the
Supplementary Material) and two previous works [58,59] show that material loss will result in a slight band shift in a weakly coupled
soft system (such as the soft lattice considered in this work) but will not cause any qualitative change in the band structure.

Hopefully, this study may present more insights into the elastodynamics of soft lattice materials and into the ways their behavior
can be exploited in engineering design. Furthermore, the authors hope that this study can elucidate the design and optimization of
lightweight, tunable elastic wave manipulation devices.
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