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A B S T R A C T   

In this study, the in-plane Bloch wave propagation in a finitely stretched square lattice is 
investigated numerically and theoretically. Precisely, the elastic band diagram is calculated for an 
infinite periodic structure with a cruciform hyperelastic unit cell under uniaxial or biaxial tension. 
Meanwhile, an elastodynamic tight-binding model is proposed to investigate the formation and 
evolution of the band structure. In said lattice, the finite stretch was found to not only tune the 
symmetry of the band structure but also purify the elastic waves into easy modes. The uniaxial 
stretch exhibits the opposite impacts on the evolution of two easy modes, while the effect of the 
biaxial stretch is equated with the superposition of the uniaxial stretches in the two tessellation 
directions. The mentioned effects on the band structure could be attributed to the competition 
between the effective shear moduli and lengths for different beam components. As a result, the 
finite stretch could tune the directional elastic wave bandgap of the soft lattice, and the broadest 
bandgap could be anticipated in an equi-biaxial stretch. This study may shed some light on the 
design and implementation of elastic wave control devices with weight efficiency and tunability. 
It also reveals that the theoretically predicted flat bands did not exist in the numerical calcula-
tions, a difference between the physical system and the corresponding simplified theoretical 
model.   

1. Introduction 

Lattice materials [1] are defined as the spatially periodic networks of structural elements (e.g., beams, bars, and shells). With a 
highly ordered construction at different scales, such systems outperform conventional (dis-order) ones in mechanical [2–5], thermal 
[6–8], and other properties [9–11]. These optimized mechanical and functional materials appear extensively in nature [12–14], and 
meanwhile, are artificially manufactured and increasingly used as the weight-efficient structural components in diverse applications 
[15–19]. 

Over the past two decades, lattice materials have aroused considerable attention for their unique elastodynamic properties orig-
inating from the periodic arrangement and variety of microstructures. As a class of phononic crystals or metamaterials, these materials 
have been commonly employed to tailor the propagation of mechanical waves. Inspired by this topic, the novel wave phenomenon of 
lattice materials [20–26] and the effects of both material [27–29] and geometry [30–34] have been investigated. Thus far, the dy-
namics of lattice materials probably be considered a mature field since the governing equations and the solution techniques are 
extensively studied. However, as permitted by the diversity of material and structure combination and as promoted by various 
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technical requirements, many exciting characteristics remain to be explored. 
For instance, if the solid phase exhibited by the lattice material is soft and highly deformable, more complex but fruitful wave 

propagation behaviors can be anticipated with subject to external mechanical loading. Accordingly, the lattice turns out to be a so-
phisticated wave modulation and sensing system [35,36], which suggests significant applications (e.g., non-destructive testing and 
health monitoring for flexible and morphable structures). In such a system, the mechanical loading can tense the network, and it acts as 
a robust mechanism for tunability in the preparation and use of the lattice material. As demonstrated by a spider orb-web, it forms a 
mechanically stable construction with taut threads [37]. The web transmits vibration signals, acting as a communication channel 
during the prey capture and the courtship [36,38]. Notably, tensions in an orb-web are not evenly distributed, and they can be 
controlled by a spider [37] when the web is being weaved and used (Spider jerks the radial threads to locate the prey.). 

Most of the relevant works on the dynamics of soft phononic crystals and metamaterials concentrate on materials with high relative 
density [39–41] or multiple phases [42–47]. Despite reports of novel or anomalous behaviors, the underlying mechanisms remain 
elusive as a result of the complex material compositions and structural configurations. Even in single-phase lattices with simple ge-
ometry, such as spider webs, the wave propagation behavior under finite deformation is still poorly understood, let alone offering clear 
guidelines for designing wave control systems that are lightweight, flexible, and easy to fabricate. Several issues must be addressed in 
this topic, including: How does the mechanical loading simultaneously affect the effective (or instantaneous) material properties and 
geometry configuration of the soft lattice, as well as how does this further influence wave propagation? What are the critical material 
and geometric parameters that govern wave propagation? 

To clarify the mentioned problems, this study investigates numerically and theoretically the in-plane Bloch wave propagation in a 
finitely stretched square lattice and determines the effects of geometric and material properties induced by the finite deformation. 
Specifically, in accordance with the Small-on-Large theory, numerical simulations are performed to examine the formation and 
evolution of the band structure. An elastodynamic tight-binding model is also proposed to provide valuable estimates and elucidate the 
underlying mechanisms. 

The rest of this study is organized as follows. In Section 2, the model description and several theoretical backgrounds are presented 
(e.g., the Small-on-Large and Bloch theories). In Section 3, the numerical and theoretical methods of examining the band structure of 
the soft lattice are illustrated. In Section 4, the band structure, the effect of pre-deformation, together with the evolution of bandgaps 
are illustrated. Lastly, the brief concluding remarks are drawn in Section 5. 

Fig. 1. Schematic diagrams of the 2D soft lattice material and its unit cell. (a) and (b) represent the initial (Ω) and current (Ω′ ) configurations before 
and after the finite deformation, respectively. (c) and (d) represent the unit cells of the current configuration adopted for the numerical and 
theoretical analyses, respectively. The first Irreducible Brillouin Zone (IBZ) of the unit cell applied in the Bloch wave analysis is presented in the 
inset of (c). The two easy wave modes are illustrated in the insets of (d). 
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2. Model description and theoretical background 

2.1. Model description 

An infinite 2D square lattice is considered, with its initial configuration Ω presented in Fig. 1(a). The unit cell is a cruciform 
structure rigidly connected by four flexural beams, with the related tessellation directions (lattice basis vectors) parallel to the beams’ 
axes. The material of the respective beam is homogeneous, isotropic, and soft, so it exhibits a hyperelastic constitution. In the plane- 
strain assumption, the finite deformation and the incremental wave motion are constrained in the X1X2 plane. The lattice’s macro-
scopic deformation is considered under the uniaxial or biaxial tensile strains in the tessellation directions for simplicity. Accordingly, 
the orthogonal beams hardly affected each other during the deformation, and any possible instability induced by the compression is 
avoided. 

With the finite deformation, the soft lattice expanded to the current configuration Ω′ (Fig. 1(b)), and the corresponding unit cell 
emerged a cruciform with diverse arm lengths (Fig. 1(c)). Except for the joint of the beams, most areas in the unit cell exhibited a state 
of uniaxial tension. In this fashion, the finite deformation could be expressed by the principal stretches (λ1 and λ2). Furthermore, the 
geometry of the current configuration could be characterized by the lengths (lx1 and lx2 ) and widths (hx1 and hx2 ) of the beams. 

2.2. Theoretical background 

To analyze the propagation of the Bloch wave in the soft lattice, some preliminary (e.g., the descriptions of finite deformation, 
incremental wave motion, and the Bloch boundary condition) are presented in the following, which are essential for both numerical 
and theoretical analyses. 

2.2.1. Finite deformation 
For a hyperelastic solid with the constitutive behavior characterized by the strain energy function W, the finite deformation makes 

the material particle at Xj in the reference (undeformed) configuration (Ω) move to the current position xi in the current (deformed) 
configuration (Ω′ ). In the absence of the body force, the deformation process satisfies the equilibrium equation, i.e., 

S ij,i = 0, (1)  

where S ij = ∂W/∂Fji denotes the nominal (or the transpose of the first Piola-Kirchhoff) stress tensor; Fji = ∂xj/∂Xi is the deformation 
gradient (unless otherwise specified, the repeated lower index complied with the Einstein summation convention). From the rela-
tionship between stress and deformation gradient, the instantaneous elastic tensor (or tangent modulus) of the material is written as 

Cijkl =
∂S ij

∂Flk
=

∂2W
∂Fji∂Flk

. (2)  

Thus, Eq. (1) can be expressed as 

(Cijklxl,k),i = 0. (3)  

Since Cijkl is non-linearly determined by Fij, Eq. (3) expresses a set of non-linear partial differential equations of the second order for xi. 
Specific to a particular xi (or equivalently Fij), the uniquely determined Cijkl is termed as the instantaneous elastic tensor expressed in 
the initial configuration. In this scenario, Cijkl and Fij are utilized to analyze the incremental wave motion. 

2.2.2. Incremental wave motion 
To examine the incremental (linear) wave motion ui superimposed onto the finite deformation, the stress generated by the waves is 

neglected, the finite prestress is equated with the instantaneous material parameters (Eq. (2) and (5)), and the waves were considered 
to propagate in a stress-free effective medium. Thus, the governing equation of wave motion in the current configuration is expressed 
as [48] 

(C̃ijklul,k),i + ρ̃ω2uj = 0, (4)  

where ω denotes the angular frequency. C̃ijkl and ρ̃ are determined by pushing forward on Cijkl and ρ (expressed in the current 
configuration), respectively, [48] 

C̃IjKl = J− 1FIiFKkCijkl, ρ̃ = J− 1ρ, (5)  

where J = det
(
Fij
)

denotes the volumetric ratio. As opposed to Eq. (3), Eq. (4) expresses a set of linear partial differential equations of 
the second order forui. 

2.2.3. Bloch boundary condition 
To determine the spatial periodicity of the current configuration, a set of lattice vectors a→s (s = x1,x2) are defined, so an arbitrary 
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unit cell could be indexed with the vector rs = ns
⃒
⃒as

⃒
⃒, with ns as an integer (the underlining represents that the Einstein summation 

convention is not invoked). Accordingly, the position of any point x0
s in a unit cell is expressed as xs = x0

s + rs. By complying with the 
Bloch theorem, the Bloch periodicity for arbitrary space function ψ is defined as: 

ψ
(
x0

s + rs
)
= ψ

(
x0

s

)
eiksrs , (6)  

where i denotes 
̅̅̅̅̅̅̅
− 1

√
; ks is the wave vector in the reciprocal lattice (Fig. 1(c)). 

Eqs. (4) and (6) usually form a definite solution problem of wave propagation in a periodic soft lattice, which underpinned the 
following numerical and theoretical analyses. 

3. Methods for Bloch wave analysis 

In the present section, the numerical method is presented to determine the band structure of the soft lattice. Moreover, a theoretical 
model is proposed to analyze the effect, together with the underlying mechanism, of the finite deformation on the Bloch wave 
behavior. 

3.1. Numerical (Finite Element) analysis 

The numerical simulations are conducted with the finite-element (FE)-method-based software COMSOL Multiphysics. With 2D 
plane-strain assumption applied, a two-step model [49,50] is adopted to analyze the finite deformation and the incremental wave 
motion, respectively. First, the finite deformation of a unit cell (Fig. 1(a)) of the soft lattice, complying with Eq. (1), was calculated 
through the nonlinear quasi-static analysis with the solid mechanics module. Second, with the deformed geometry (Fig. 1(c)) and the 
deformation gradient, which are obtained in step one, imported, the band structure of the lattice is determined with the module of 
weak-form PDE. Based on an eigenvalue analysis of Eq. (4), the band structure, i.e., the dispersion relation of elastic waves, is explored 
along the edges (Γ − X − M − Y − Γ) of the first Irreducible Brillouin Zone (IBZ, Fig. 1(c)). Detailed information about the numerical 
simulations can be referred in the Supplementary Material. 

3.2. Theoretical model: An elastodynamic tight-binding model 

Despite the numerical simulation, a theoretical model was also built to characterize the Bloch wave propagation and, more 
importantly, to qualitatively indicate the effect of finite deformation on the band structure. Thus, the unit cell was simplified as a nodal 
connection of four beams under the ideal uniaxially stretch. As illustrated in Fig. 1(d), the internal node was numbered as 0, and the 
peripheral nodes were numbered as 1–4, respectively. The indexes of the four beams were identical to the corresponding peripheral 
nodes. Thus, 

{
ui‖(s), u⊥

i (s)
}
, i = 1,2, 3,4 is adopted to represent the axial and transverse displacements (relative to the beam direc-

tion) in the i - th beam, where s denotes the local axial coordinate (s = x1 (or x2) for i = 1, 3 (or 2, 4)) with the origin at the central 
node (Fig. 1(d)). 

3.2.1. Equations of motion in a single beam 
For a single Rayleigh beam under the axial stretch, there exist two wave modes, i.e., the longitudinal (Primary, or P- for short) and 

transverse (Secondary, or S-) modes, which are respectively governed by the one-dimensional time-harmonic wave equations [51] 

Ẽu‖′′

i (s)+ ρ̃ω2ui‖(s) = 0, (7)  

BẼu⊥′′′

i (s)+
(

Bρ̃ω2 − G̃
)

u⊥′′
i (s) − ρ̃ω2u⊥

i (s) = 0, (8)  

where the prime represents the differentiation with respect tos. B = I/A expresses the moment of inertia divided by the cross-sectional 
area. Ẽ and G̃ are the effective Young’s and shear moduli with expressions [51] 

Ẽ = C̃1111 −
C̃1122C̃2211

C̃2222
, G̃ = C̃1212 −

C̃1221C̃2112

C̃2121
(9)  

in 2D problems, which measure the stiffness of a finitely stretched beam to resist incremental wave motion in P- and S-modes, 
respectively. For a specific deformation state, their value can be obtained by Eq. (5). It is also worthy of note that G̃ is equivalent to the 
axial Cauchy stress in the Rayleigh beam [51]. The theoretical model ignores the irregular geometry and inhomogeneous deformation 
in the unit cell that distribute near the junction. By means of compensation (or numerical correction) for this simplification, we 
calculate ̃E and G̃ by using the deformation gradient of a beam component obtained from the numerical simulation instead of making a 
rough estimate of them with the elongation of a single beam. The comparison between these two treatments can be referred in the 
Supplementary Material. 
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3.2.2. Boundary conditions 
Twenty-four boundary conditions are required to establish a proper combination of equations of motion for each beam, which 

includes the following: 
a). Nine kinematic conditions at the internal node, representing the compatibility of displacement, i.e., 

up
1(0) = uq

2(0) = up
3(0) = uq

4(0), (p, q = ⊥, ‖, p ∕= q), (10)  

and rotation (with rigid joint assumption), i.e., 

u⊥
′

1 (0) = u⊥
′

2 (0) = u⊥
′

3 (0) = u⊥
′

4 (0); (11) 

b). Three equilibrium conditions at the internal node, i.e., 

Ni(0) − Ni+2(0)+Vj(0) − Vj+2(0) = 0, (i, j = 1, 2, i ∕= j) (12)  

M1(0) − M3(0)+M2(0) − M4(0) = 0, (13)  

where 

Vi(s) = − Ẽs AsBsu⊥′′′

i (s) +
(

G̃s − ρ̃sBsω2
)

Asu⊥′

i (s),Ni(s) = ẼsAsu
‖′′

i (s),Mi(s) = ẼsIsu⊥′′
i (s), (14)  

denote the shear force, the axial force, and the bending moment in the i - th beam, respectively; 
c). Twelve Bloch boundary conditions at the peripheral nodes, representing the periodicity of the displacement, rotation, bending 

moment, and shear force. In the local coordinate system, the Bloch conditions (Eq. (6)) are expressed as: 

Ψi+2
(
x0

s + rs
)
= Ψi

(
x0

s

)
eiksrs . (15)  

To be specific, we take Ψi = u⊥
i ,u⊥

′

i ,ui‖,u‖
′

i ,Mi,Vi, x0
s = − ls and rs = 2ls in Eq. (15). (s = x1 (or x2) for i = 1, 3 (or 2, 4)). 

3.2.3. Assembly of equations and analytical dispersion relation 
With eight equations of motion (Eqs. (7) and (8)) and twenty-four boundary conditions, an eigenvalue problem is formed with a 

24 × 24 characteristic matrix [19]. In this study, more accurate results could be achieved by performing the numerical treatment. The 
theoretical model is mainly used to reveal the underlying mechanism. However, such a huge algebraic system could be too complicated 
to yield an analytical solution concise enough for qualitative analyses. As a trade-off, instead of solving the characteristic determinant 
directly, the algebraic system is first degenerated into two smaller (12× 12) systems by confining (or “binding”) the possible defor-
mation of the soft lattice into two “easy” modes. Consistent with the tight-binding model in solid physics, this degenerate model is 
termed as an elastodynamic “tight-binding” model. Given the mode shapes illustrated in the insets of Fig. 1(d), the two beams with 
identical orientation in the unit cell vibrated in a P- or S-mode, whereas the other two beams presented the counterpart mode. These 
mentioned modes led to the identical displacement directions of the respective material point in the unit cell and are, therefore, in a 
homogenization perspective, the longitudinal (P-) and transverse (S-) modes of the lattice. We refer to them as “easy” (easiest to be 
excited) modes to distinguish them from the propagation modes of the beam components. 

The elastodynamic tight-binding model requires the rigid joint constraint at the internal node to be relaxed to construct the 
degenerated problem. Accordingly, the compatibility condition of rotation (Eq. (11)) is replaced with: 

u⊥
′

1 (0) = u⊥
′

3 (0), (16)  

u⊥
′

2 (0) = u⊥
′

4 (0). (17)  

In correspondence, the equilibrium of bending moment (Eq. (13)) should be replaced with: 

M1(0) = M3(0), (18)  

M2(0) = M4(0). (19)  

Thus, under Mode I (Fig. 1(d)), the corresponding equations of motion are Eq. (7) for i = 1, 3, and Eq. (8) for i = 2, 4. Moreover, the 
selected boundary conditions are Eq. (10) forp = ‖, q = ⊥, Eq. (12) for i = 1, j = 2, Eq. (15) for s = x1, i = 1, 3 when Ψi = ui‖ and 

u‖
′

i , and for s = x2, i = 2, 4 when Ψi = u⊥
i , u⊥

′

i , Mi and Vi, Eqs. (17) and (19). The rest equations constituted the boundary value 
problem under Mode II. 

3.2.4. Analytical dispersion relations 
By solving the two eigenvalue problems under the easy modes, the dispersion equations, describing the propagation of Bloch waves 

with a frequency ω and a wave vector ks in the soft lattice, could be yielded. Under Modes I (s = x1) and II (s = x2), it yields: 
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Ps(ω)Qt(kt,ω)+Rs(ks,ω)Tt(kt,ω) = 0 (20)  

with s, t = x1, x2 and s ∕= t, in which 

Ps(ω) = sin

⎛

⎜
⎝

2ls

̅̅̅̅

ρ̃s

√

̅̅̅̅̅
Ẽs

√ ω

⎞

⎟
⎠,Qt(kt,ω) = γtαtβtht

(
cos(2ktlt) − cosh

( ̅̅̅
2

√
ltαt

))(
cos(2ktlt) − cosh

( ̅̅̅
2

√
ltβt

))
,Rs(ks,ω)

= hs

̅̅̅̅̅̅̅

2Ẽs

√

ρ̃sω

⎛

⎜
⎝cos(2ksls) − cos

⎛

⎜
⎝

2ls

̅̅̅̅

ρ̃s

√

̅̅̅̅̅
Ẽs

√ ω

⎞

⎟
⎠

⎞

⎟
⎠,Tt(kt,ω)

= sinh
( ̅̅̅

2
√

ltβt

)
αt

(
cos(2ktlt) − cosh

( ̅̅̅
2

√
ltαt

))
− sinh

( ̅̅̅
2

√
ltαt

)
βt

(
cos(2ktlt)

− cosh
( ̅̅̅

2
√

ltβt

))
, (21)  

and αt , βt , γt are defined as: 

Fig. 2. Phononic band structures for the soft lattice with the typical finite deformation conditions: (a) deformation free (λ1 = λ2 = 1), (b) uniaxial 
stretch (λ1 = 1.4, λ2 = 1), (c) biaxial stretch (λ1 = 1.4, λ2 = 1.2), and (d) equi-biaxial stretch (λ1 = λ2 = 1.3). The solid and scattered lines denote 
the numerical (FE) and theoretical results, respectively. The colors in the lines indicate the magnitude of the polarization, from 0 (Mode II) to 1 
(Mode I). A typical branch in Γ − X interval was marked with red shading in (a), (b) and (d), respectively, to show its evolution with the deformation. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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αt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

G̃t − Btρ̃tω2 + γt

BtẼt

√

, βt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

G̃t − Btρ̃tω2 − γt

BtẼt

√

, γt =

̅̅̅̅̅̅̅̅̅̅̅

4BtẼt

√

ρ̃tω2 +

(

G̃t − Btρ̃tω2
)2

. (22) 

Specific to non-zero Rs andQt, Eq. (20) is rewritten as: 

Ps(ω)

Rs(ks,ω)
+

Tt(kt,ω)

Qt(kt,ω)
= 0, (23)  

revealing the decoupling of the horizontal and vertical beam components for any frequency ω, i.e., the stretch in the s-direction only 
changes the terms or parameters with subscript s, with the remaining unaffected. Whereas for Qt = 0 or Rs = 0, the flat bands, i.e., 
resonance modes independent of the wave vector, were present in different edges of IBZ. 

As reported in the existing study on a single soft beam [51], a sufficiently large stretch might lead to B → 0 and G̃ → Ẽ. When B → 0, 
the rotary motion of beam elements is negligible, and Eq. (8) degenerated to the identical form as Eq. (7). Thus, the dispersion relation 
is simplified to a certain extent. For instance, when the beams in both directions are under large stretches, i.e., Bt → 0, the band 
structure (Eq. (20)) is simplified as: 

̅̅̅̅̅

G̃t

√

ρ̃t
sin

⎛

⎜
⎝

2ls

̅̅̅̅

ρ̃s

√

̅̅̅̅̅
Ẽs

√ ω

⎞

⎟
⎠

⎛

⎜
⎝cos(2ktlt) − cos

⎛

⎜
⎝

2lt

̅̅̅̅

ρ̃t

√

̅̅̅̅̅

G̃t

√ ω

⎞

⎟
⎠

⎞

⎟
⎠+

̅̅̅̅̅

Ẽs

√

ρ̃ssin

⎛

⎜
⎝

2lt

̅̅̅̅

ρ̃t

√

̅̅̅̅̅

G̃t

√ ω

⎞

⎟
⎠

⎛

⎜
⎝cos(2ksls) − cos

⎛

⎜
⎝

2ls

̅̅̅̅

ρ̃s

√

̅̅̅̅̅
Ẽs

√ ω

⎞

⎟
⎠

⎞

⎟
⎠ = 0. (24) 

Fig. 3. Effect of uniaxial stretch on the band diagram in the Γ − X direction. (a) and (b) represent the numerical results for the deformation applied 
in the x1- and x2-directions. The colors in the lines indicate the magnitudes of the polarization. 
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Accordingly, G̃ → Ẽ further simplified the dispersion relation. When G̃s = Ẽs, Eq. (24) presents an identical form for s = x1 and x2, 
which indicates an overlap of the band curves under Modes I and II. 

4. Band structure of the soft lattice 

In the subsequent calculations, the geometry parameters of the unit cell at initial configuration are taken as 2lx1 = 2lx2 = 10hx1 =

10hx2 = 0.01 m. A hyperelastic material with compressible neo-Hookean strain energy function, i.e., [49] 

W =
L

2
(J − 1)2

− μlnJ +
μ
2
(
tr(FsiFsj) − 2

)
, (25)  

is considered, where L and μ denote the first and second Lamé constants, respectively. The initial material parameters are assumed 
with the first and second Lamé constants L = 7 MPa, μ = 1 MPa, respectively, as well as the initial mass density ρ = 1110 kg/m3. 
The mentioned parameters denote a melt-processible rubber [52]. The material damping is neglected for simplicity. 

4.1. Band structure for typical finite deformation 

The band structure of the soft lattice under the typical finite deformation conditions is illustrated in Fig. 2. To classify the wave 
modes of each branch, the amount of polarization is defined as [53]: 

p2 =

∫
|ux1 |

2dr
∫ (

|ux1 |
2
+ |ux2 |

2 )dr
, (26)  

where the integral takes over the current configuration of the unit cell (the cyan-blue area in Fig. 1(c)), ux1 and ux2 represent the 
displacement components (Fig. 1(c)). For the in-plane wave motion, p2 = 0 or p2 = 1 represent two easy modes, whereas the value 
between 0 and 1 represents the coupled mode (In Figs. 2, 3, and 5, we display p2 ∈ [0.15, 0.85] in green without any distinction, which 
is easy to observe). Then, the easy modes predicted with the theoretical model are also provided. 

The band structure of the deformation-free lattice (λ1 = λ2 = 1) is demonstrated in Fig. 2(a). As indicated from the comparison of 
the numerical and theoretical results, the theoretical model reasonably captures the essential characteristics of the propagation of 
Bloch waves in the soft lattice, especially for easy modes. However, when the lattice wave propagated under the coupled mode, the 
theoretical prediction slightly deviated from the numerical simulation. 

The band structures of the lattice under the uniaxial (λ1 = 1.4, λ2 = 1), biaxial (λ1 = 1.4, λ2 = 1.2), and equi-biaxial (λ1 = λ2 =

1.3) stretches are respectively illustrated in Fig. 2(b)–(d), demonstrating that the elongation in different tessellation directions 
diversely impacted the movement of the bands. As the comparison of Fig. 2(a)–(c), the proportion of the coupled modes (green curves) 
in the band structure decreased significantly by the stretches, which suggests that the finite deformation could purify the wave modes 

Fig. 4. The effect of material (a & b) and geometrical (c & d) factors on the band structure, in which the diagrams for P- (red) and S- (blue) modes 
are presented independently, and the colors represent the magnitude of the uniaxial stretch. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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(i.e., turn the coupled modes into easy ones). Note that “purify” here refers specifically to mode conversion that results from finite 
stretch, as opposed to “filtering,” which is very common in phononic crystals. It also reveals that the theoretical model is more suitable 
for predicting the band structure of the pre-deformed lattice than that of the undeformed one. For the equi-biaxial stretch (Fig. 2(d)), 
all the branches shifted to higher frequencies than that for deformation-free lattice, and the coupled modes are localized around the 
high-symmetry points. 

Fig. 2 present no complete bandgaps in the frequency range of interest. However, the directional bandgaps existed under both wave 
modes, and their locations moved with the applied finite deformation. Besides, it is noted that the flat band and the degeneracy points 
are predicted in the theoretical model, whereas they are not present in the numerical results. In the following subsections, all the 
mentioned phenomena will be discussed more specifically. 

4.2. Effect of pre-deformation on the band structure 

4.2.1. The effect of uniaxial stretch 
To reveal the effect of finite deformation on the soft lattice’s band structure, the band diagram are drawn in Γ − X interval with 

uniaxial stretch λ = 1 ∼ 1.8 applied in x1- and x2-directions in Fig. 3(a) and (b), respectively. As revealed from the figure, the stretch 
along the x1-direction decreased the eigenfrequencies under Mode I, whereas it increases the eigenfrequencies under Mode II. 
However, the x2-counterpart exerted an opposite effect. Under the coupled mode, no significant regularity is observed. 

The theoretical model qualitatively explains the evolution pattern. When s = x1, Eq. (24) concludes that ω∝
̅̅̅̅̅̅̅

Ẽx1

√

/ρ̃x1
/lx1 under 

Mode I and ω∝
̅̅̅̅̅̅̅̅

G̃x1

√

/ρ̃x1
/lx1 under Mode II. As indicated from the further analysis (Supplementary Material), both G̃x1 and lx1 increase 

after a certain tensile deformation, while Ẽx1 and ρ̃x1 
remain almost unchanged. Moreover, the variation of 

̅̅̅̅̅̅̅̅

G̃x1

√

is more significant 

than that of lx1 . In summary, G̃xi and lxi determine the band shift. After a stretch along the x1 (or x2)-direction, the eigenfrequencies 

under Mode I decreased by the increment of lx1 (or 
̅̅̅̅̅̅̅̅

G̃x2

√

/lx2 ), while that under Mode II increased by the increment of 
̅̅̅̅̅̅̅̅

G̃x1

√

/lx1 (or lx2 ). 
The effect of the finite pre-deformation on soft lattice material involved the variations in (effective) material and geometry. To 

consult their influence separately, under the uniaxial stretch (Fig. 3(a)), the band diagram is recalculated by using the theoretical 
model with the initial geometric parameters and the effective material parameters after the deformation (Fig. 4). Furthermore, the 
band diagram obtained using the current geometric and initial material parameters is presented as a comparison. 

The diagram clearly illustrates the distinct effects of geometry and material on the two easy modes under the stretch. Moreover, the 
evolution of the branches could be qualitatively explained by the tight-binding model. According to Fig. 4(a) and (b), the material 
factor exerted the opposite effects on the two wave modes: Under Mode I, the non-flat bands slightly shifted to higher frequencies with 

the increment of 
̅̅̅̅̅̅̅

Ẽx1

√

/ρ̃x1
; under Mode II, however, all the eigenfrequencies, primarily affected by 

̅̅̅̅̅̅̅̅

G̃x1

√

/ρ̃x1
, increased significantly. 

However, the effect of the geometric factors is nearly identical for the two modes (Fig. 4(c) and (d)): The reduction in length lx1 

Fig. 5. The comparison of the band diagram in the Γ − X interval under equi-biaxial stretch, obtained from numeral simulation (solid lines), Eq. (20) 
(solid scatters), and Eq. (24) (hollow scatters), respectively. 
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decreased all the eigenfrequencies, and the variation is more significant for high-frequency branches than that of the lower ones. By 
interpreting the numerical result (Fig. 3 (a)) with the mentioned mechanisms, it is concluded that the band structure evolution resulted 
from the competition between material and geometric factors. 

As indicated in Fig. 4(a) and (c), several anomalous bands could be perceived in the theoretical results under Mode I, including the 
deformation immune bands (DIBs), the local deformation immune bands (LDIBs), the flat bands (FBs). As their names suggest, the 
position of the DIB almost does not vary with the uniaxial stretch in the x1-direction, while in the LDIB, only the eigenfrequency at Γ is 
stationary. In contrast, the dispersionless flat bands are independent of the deformation and the wave number. As indicated from the 
comparison of Fig. 3(a) and Fig. 4, the theoretically predicted DIBs and LDIBs are consistent with the numerical simulations. However, 
the flat bands never present in the numerical results. As a replacement, two coupled modes are generated by hybridizing the flat bands 
under Mode I and the corresponding non-flat bands under Mode II. The occurrence of these anomalous bands is explained in the 
Supplementary Material. 

4.2.2. The effect of biaxial stretch 
As impacted by the uncoupling of beam components in the orthogonal directions, the effect of a biaxial stretch was equivalent to 

that of two sequential uniaxial stretches so that it could be qualitatively predicted. For instance, the movement of a representative 
branch is tracked under Mode I, which is marked with red shading in Fig. 2. A horizontal stretch to λ1 = 1.4 make the branch move 
monotonically downward (Fig. 2(b)), except that its left end was almost stationary. Subsequently, a vertical stretch to λ2 = 1.2 make 
the entire branch shift to higher frequencies (Fig. 2(c)). 

The band diagrams of the soft lattice in Γ − X interval for different equi-biaxial states (λ1 = 1.2 ∼ 1.8) are illustrated in Fig. 5. For 
comparisons, the band curves predicted by using Eq. (20) and (24) are plotted, thereby indicating that the band curves moved closer to 
each other with the increase in the magnitude of stretch. They almost coincide with each other when λ1 = λ2 reaches1.4. It is therefore 
indicated that the finite stretch weakened the rotary motion in a soft beam component. Accordingly, as a waveguide, the pre-stretched 
beam behaved more like a string than a Rayleigh beam. Furthermore, Fig. 5 demonstrates the propinquity of the two easy modes 
attributed to the agreement of the effective material parameters under the huge stretch. Obviously, the phenomenon could contribute 
to the modulation of the directional bandgap to a broad frequency range. 

4.3. The evolution of directional bandgaps under stretch 

To demonstrate the effect of pre-stretch on the bandgaps, the evolution diagrams of the bandgaps in Γ − X interval are drawn under 
Modes I and II at different stretching states (Fig. 6(a) and (b)). In both figures, the frequency ranges occupied by the coupled modes are 

Fig. 6. Evolution of bandgaps in Γ − X edge of IBZ with different finite deformation. (a) and (b) are the bandgap evolution under Modes I (red) and II 
(blue). (c) is the same as (a) and (b) but under equi-biaxial stretch. The gray areas in (c) correspond to the elastic wave bandgaps, which is the 
intersection of the red and blue ones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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passbands. 
Under Mode I (Fig. 6(a)), the uniaxial stretch in the x1-direction narrowed several (the third and fourth) of the bandgaps without 

affecting their center frequencies, while the x2-counterpart simultaneously increases the bandwidths and center frequencies. As 
opposed to Mode I, Mode II (Fig. 6(a)) has more bandgaps in this interval. Moreover, the uniaxial stretch in either direction signifi-
cantly increase the bandwidth, and the center frequencies slightly or significantly increase for the stretches in x1- and x2-directions, 
respectively. The boundaries of different bandgaps are significantly close under a huge stretch, thereby forming an ultra-wide bandgap 
with several narrow passbands. 

Besides, the broadest in-plane elastic wave bandgap (the bandgap for both modes) appears in the case of the equi-biaxial stretch. As 
indicated in Fig. 6(c), the bandgaps under Mode I widened dramatically with the increase in the stretch. The two lowest bandgaps for 
both modes are consistent, thereby forming the widest elastic wave bandgaps at a high strain level. The mentioned phenomenon can be 
explained as the convergence of the dispersion curves of the two modes under a large stretch (Eq. (24) and Fig. 5(d)). 

5. Conclusion and discussion 

In brief, this study investigated the propagation of Bloch waves in a pre-stretched square lattice material. In this regard, the wave 
behavior and its influence by the finite deformation are determined by numerical simulations, while an elastodynamic tight binding 
model reveals the mechanism underlying the phenomena. The pre-stretched square lattice has been found to evidence the following 
features in terms of wave dynamics.  

• In-plane elastic waves primarily propagate in two easy modes and the pre-stretch purifies the wave modes and localizes the coupled 
modes to the high-symmetry points.  

• As the uniaxial pre-stretch increased, the two easy modes demonstrate monotonous but opposite movements. The effect of biaxial 
stretch falls to that of two uniaxial stretches in the tessellation directions.  

• The decisive geometric and material parameters that govern the band movement represent the beam component’s length and the 
effective shear modulus, respectively.  

• The broadest directional elastic wave bandgaps appeared for the high level equi-biaxial stretch. 

Though the complete bandgap does not exist in the mentioned soft lattice, it could be implemented by introducing resonance 
[54,55] or Bragg scattering [56] mechanisms. In addition, the comparing numerical and theoretical calculations indicated the dif-
ferences between the physical and simplified theoretical models. It is therefore demonstrated that the theoretically predicted flat 
bands, the characteristics showing promising applications in topological acoustics [57], were not presented in the numerical calcu-
lations. However, it is not excluded that such characteristics can be determined by means, e.g., tuning the slenderness of the beam 
components [20]. It is worth mentioning that, in this work, the material damping is neglected for simplicity. A rough estimate (in the 
Supplementary Material) and two previous works [58,59] show that material loss will result in a slight band shift in a weakly coupled 
soft system (such as the soft lattice considered in this work) but will not cause any qualitative change in the band structure. 

Hopefully, this study may present more insights into the elastodynamics of soft lattice materials and into the ways their behavior 
can be exploited in engineering design. Furthermore, the authors hope that this study can elucidate the design and optimization of 
lightweight, tunable elastic wave manipulation devices. 
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