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In accordance with hyperelastic transformation theory, a range of shear-wave manipulation devices can
be designed with neo-Hookean materials pre-deformed properly. However, how such devices fit the
background medium remains elusive. In this study, a systematic formula is developed in terms of elastic
wave transmission and reflection between un-deformed and pre-deformed hyperelastic materials. By
both theoretical analyses and numerical simulations, the shear-wave propagation from an
un-deformed neo-Hookean material to the pre-deformed one is investigated. Among the three typical
deformations, ‘‘constrained” uniaxial tension and simple-shear are found to be able to ensure total trans-
mission, whereas ordinary uniaxial tension and hydrostatic compression could cause reflection. Thus,
three embedded shear-wave manipulation devices are proposed, namely, a unidirectional cloak, a splic-
ing beam bend and a concave lens; their performance is verified by numerical simulations. This study
may underpin the design and realization of soft-matter-based wave control devices. Potential applications
can be expected in nondestructive testing, impact protection, biomedical imaging, as well as soft robotics.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Elastic waves refer to mechanical vibrations propagating in
solid media. As a carrier of energy and information, they have been
extensively studied over centuries (Auld, 1973; Achenbach, 2012)
and suggested technologically significant applications in numerous
branches of engineering (e.g., nondestructive testing, medical
imaging and geophysical prospecting). In recent years, hyperelastic
soft materials (e.g., elastomers and gels) have aroused huge atten-
tion in elastodynamics (Bertoldi and Boyce, 2008; Norris and
Parnell, 2012; Guo et al., 2017; Li et al., 2017; Xin and Lu, 2017;
Deng et al., 2019; Zhang et al., 2019) for their high sensitivity,
diverse material behavior, and reversible geometry effects exerted
by finite deformation. It is noteworthy that a hyperelastic transfor-
mation theory (HTT) (Norris and Parnell, 2012) has been proposed,
revealing that the soft materials with specified strain energy func-
tions (SEFs) act as smart metamaterials (Shin et al., 2012) and can
exhibit some unique wave manipulation properties by regulating
their deformation. Note that in neo-Hookean materials, shear-
wave (S-wave) paths comply with the distorted material curves
(Chang et al., 2015). The mentioned finding inspires researchers
to design considerable S-wave control devices (e.g., invisibility
cloak (Parnell et al., 2012; Zhang and Parnell, 2018; Guo et al.,
2019), wave mode splitter (Chang et al., 2015) and phononic
crystal (Liu et al., 2017; Zhang and Parnell, 2017)). As compared
with the conventional transformation technique (Pendry et al.,
2006; Rahm et al., 2008; Norris and Shuvalov, 2011), HTT does
not require microstructures. Thus, such soft devices exhibit
remarkable potential in non-dispersion and broadband wave
manipulation. Moreover, compared with ‘‘hard” devices, such soft
devices are naturally superior in integration with other soft-
systems and may provide new insights into the designs of biomed-
ical and soft robotic technologies.

On the whole, a soft device does not work as an individual,
while it always embeds in its ‘‘working environment” or the back-
ground medium. In existing studies (Parnell et al., 2012; Guo et al.,
2019), external boundaries of the finite soft devices are usually
fixed, ensuring impedance matching between the soft device and
the background. However, it also confines the possible finite defor-
mation into a narrow range, thereby significantly limiting the func-
tions that can be achieved by the soft device. If the constraint is
relaxed, the discontinuity will occur at the interface between the
soft device and the background. It is critical to clarify how the dis-
continuous interface affects the wave propagation. Open questions
also cover how to find appropriate deformations by which the pre-
deformed material can fit the background, and how to design soft
devices exhibiting both the wave control capacity and the impe-
dance matching property.

The small-on-large theory (Ogden, 2007) creates a natural
framework to analyze the problem of incremental linear wave
motions superimposed onto a finite pre-deformation. It lays an

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2020.11.025&domain=pdf
https://doi.org/10.1016/j.ijsolstr.2020.11.025
mailto:changzh@cau.edu.cn
https://doi.org/10.1016/j.ijsolstr.2020.11.025
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


Fig. 1. Schematic diagram of an elastic wave propagations from an un-deformed
hyperelastic material (I, light blue mesh) to a pre-deformed one (II, orange mesh). A
normal incidence is considered at the interface (dark blue line). Besides, the initial
configuration (gray mesh) of the pre-deformed material is presented as a reference.
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essential basis for the soft device design and investigating their
matching properties. In the theory, however, pre-deformed hyper-
elastic material usually exhibits an effective anisotropy and the
behavior of a Cosserat-like continuum (Ogden, 1984). In this sce-
nario, the classical theory (Auld, 1973) for elastic wave transmis-
sion and reflection becomes invalid. The principle that dictates
such a physical process remains unknown.

To address the mentioned problems, in this paper, we present a
systematic formulation of the transmission and reflection of elastic
waves between un-deformed and pre-deformed hyperelastic
materials. To be specific, we investigate S-wave propagating
between an un-deformed neo-Hookean material, as well as the
one subject to several typical deformations (e.g., uniaxial tension,
hydrostatic compression, and simple-shear). On that basis, three
embedded soft devices are proposed, namely, a unidirectional
cloak, a splicing beam bend, and a concave lens. Furthermore, both
theoretical analyses and numerical simulations are conducted to
demonstrate the efficiency of such devices.

The rest of this paper is arranged as follows. In Section 2, the
small-on-large theory is briefly reviewed as preliminary. In Sec-
tion 3, the transmission and reflection of elastic waves between
un-deformed and pre-deformed hyperelastic materials are ana-
lyzed. Next, the transmission characteristics of the S-wave are
delved into at the interface of the neo-Hookean materials. In Sec-
tion 4, three soft devices are proposed for S-wave manipulation.
Lastly, our brief concluding remarks are drawn, and a discussion
on the avenues for future work is presented in Section 5.

2. Small-on-large theory: Linear elastic wave propagation in a
finitely deformed hyperelastic material

2.1. Large deformation

In terms of a hyperelastic solid with constitutive behavior char-
acterized by the strain energy function W , the large (finite) defor-
mation makes the material particle at Xj in the reference (un-
deformed) configuration move to the current position xi in the cur-
rent (deformed) configuration. The large deformation (free of body
force) follows the static equilibrium equation of (Ogden, 1984)

Sij;i ¼ 0 ð1Þ
where Sij ¼ @W=@Fji denotes the nominal (first Piola-Kirchoff) stress
tensor; Fji ¼ @xj=@Xi is the deformation gradient. In Eq. (1) and
beyond, the repeated subscripts imply summation over all possible
values. By substituting the relation

Cijkl ¼ @Sij
@Flk

¼ @2W
@Fji@Flk

ð2Þ

into Eq. (1), the equilibrium equation can be rewritten as

ðCijklxl;kÞ;i ¼ 0 : ð3Þ
It is noteworthy that on the whole, the fourth-order elastic ten-

sor Cijkl is non-linearly determined by the deformation gradient Fij.
Accordingly, Eq. (3) refers to a set of quasi-linear partial differential
equations of the second order for xi (Ogden, 1984). In terms of a
particular xi (or equivalently Fij), the uniquely determined elastic
tensor Cijkl is termed as the instantaneous elastic tensor expressed
in the initial configuration. In this scenario, both Cijkl and xi are
required to analyze the incremental wave motion.

2.2. Small wave motion

The incremental wave motion ui superimposed onto the finite
deformation xi complies with
137
ðC0IjKlul;KÞ;I ¼ q0€uj ; ð4Þ
in the time domain, or

ðC0IjKlul;KÞ;I ¼ �x2q0uj ; ð5Þ
in the frequency domain. C0IjKl and q0 denote the instantaneous

elastic tensor and mass density obtained by a pushing forward
operation on Cijkl and q, respectively, i.e., (Ogden, 2007)

C0IjKl ¼ J�1FIiFKkCijkl; q0 ¼ J�1q ; ð6Þ
where J ¼ detðFijÞ denotes the volumetric ratio.

For a homogeneously deformed hyperelastic material, incre-
mental plane waves can be expressed as

ui ¼ Amie
i kljXj�xtð Þ; ð7Þ

where A is the scalar wave amplitude,mi denotes a unit polarization
vector, i denotes

ffiffiffiffiffiffiffi
�1

p
, k is the wave number, li represents the unit

vector in the wave direction andx is the angular frequency. By sub-
stituting Eq. (7) into Eq. (4), the Christoffel equation can be obtained
as (Auld, 1973)

C0IjKllI lKml ¼ c2q0mj; ð8Þ
where c ¼ x=k denotes the phase velocity of the elastic wave. For
an in-plane problem, by solving the eigenvalue problem of Eq. (8),
the phase velocities (VP and VS) and the polarization (mi) of the lon-
gitudinal (P-) and shear (S-) waves can be calculated.

3. Transmission and reflection of elastic waves at the interface
between un-deformed and pre-deformed hyperelastic
materials

3.1. Theoretical formulae

For simplicity, the finite deformation is restricted in the
assumption of plane-strain, i.e., the out-of-plane principal stretch
k3 � 1, and the in-plane incremental waves are considered only.
In such a two-dimensional problem, plane elastic wave incidence
is considered on a plane interface between un-deformed (Domain
I, F ¼ unit tensor) and pre-deformed (Domain II, F–unit tensor)
hyperelastic materials (Fig. 1). The pre-deformation can be
imposed by mechanical loading, or by any external field (e.g., heat
(Kino et al., 2017; Bisoyi et al., 2019), electric field (Okuzaki et al.,
2009; Haghiashtiani et al., 2018) or magnetic field (Kankanala and
Triantafyllidis, 2004; Zhao et al., 2019)) introduced to hyperelastic
materials responding to such stimuli. However, such external
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loading mechanisms should be carefully designed to avoid the pos-
sible impact on wave propagation. With the loaded state being
maintained, the deformed material is perfectly bonded to the un-
deformed one. In this study, the normal incidence is considered
to avoid mode conversion (Auld, 1973) induced by oblique inci-
dence. Meantime, in the theoretical analysis, the deformation in
Domain II is restricted as homogeneous, so the elastic waves travel
in straight paths.

At the interface, the particle velocity v i ¼ @ui=@t and the trac-
tion of the Cauchy stress rij ¼ C0ijklul;k induced from the elastic
wave motion u should be continuous, which are expressed as,

v I
i ¼ v II

i ; ð9Þ

rI
ijnj ¼ rII

ijnj; ð10Þ
in which nj is the unit normal vector. An S-wave is considered prop-
agating along the direction of l1 ¼ 1, l2 ¼ 0 (Fig. 1) and polarizing in
the direction of m1 ¼ 0, m2 ¼ 1. According to Eqs. (7) and (8), and
with the time harmonicity ei kl1X1�xtð Þ being omitted, in Domain I,
the particle velocity and the traction at the interface (X1 ¼ 0) are
expressed as

v I
2

� �
inc ¼ A; rI

21

� �
inc ¼ ixAqVS; ð11Þ

where the subscript inc represents the incident wave, the subscript
i ¼ 1; 2 denotes the component of the spatial coordinate Xi. Like-
wise, the particle velocity and the stress of the P- and S-waves
emerged at the interface are expressed as

v I
1

� �
R ¼ B; rI

11

� �
R ¼ �ixBqV I

P; ð12Þ

v I
2

� �
R ¼ C; rI

21

� �
R ¼ �ixCqV I

S; ð13Þ

v II
10

� �
T ¼ D; rII

1010
� �

T ¼ ixDq0V
II
P ; ð14Þ

v II
20

� �
T ¼ E; rII

2010
� �

T ¼ ixEq0V
II
S ; ð15Þ

where the subscripts R and T respectively represent the reflection
and the transmitted waves, the subscript i0 ¼ 10; 20 denotes the
polarization direction mi0 in Domain II, while B, C, D and E refer to
the scalar amplitudes of the waves.

For the equivalent anisotropy resulting from the finite deforma-
tion, quasi-mode elastic waves may exist (Chen et al., 2017), which
means that the P- and S-waves’ polarization directions in Domain II
are no longer parallel or normal to the directions of propagation.
Thus,u is introduced as the angle between the polarization vectors
in Domain I and II. In this regard, Eqs. (14) and (15) can be
expressed as the spatial coordinate Xi by using (Auld, 1973)

v II
1

v II
2

" #
¼ cosu �sinu

sinu cosu

� � v II
10

v II
20

" #
; ð16Þ

and

rII
11

rII
21

" #
¼ cosu �sinu

sinu cosu

� � rII
1010

rII
2010

" #
: ð17Þ

By substituting Eqs. (11)–(15) into Eq. (9), it yields

B ¼ Dcosu� Esinu; ð18Þ

Aþ C ¼ Dsinuþ Ecosu: ð19Þ
Likewise, Eq. (10) can be written as

BqV I
P ¼ �Dq0V

II
Pcosuþ Eq0V

II
S sinu; ð20Þ

�AqV I
S þ CqV I

S ¼ �Dq0V
II
Psinu� Eq0V

II
S cosu: ð21Þ
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By solving Eqs. (18)–(21), the transmission and reflection coef-
ficients Cm

ns are defined as

CS
TP ¼

D
A
¼

2qV I
Ssinu q0V

II
S þ qV I

P

� �
D

; ð22Þ

CS
TS ¼

E
A
¼

2qV I
Scosu qV I

P þ q0V
II
P

� �
D

; ð23Þ

CS
RP ¼

B
A
¼ �

2qq0V
I
Ssinucosu V II

P � V II
S

� �
D

; ð24Þ

CS
RS¼

C
A

¼
q2V I

SV
I
P�q2

0V
II
SV

II
P þqq0sin

2u V I
SV

II
S �V I

PV
II
P

� �
þqq0cos

2u V I
SV

II
P �V II

SV
I
P

� �
D

ð25Þ
where D ¼ q2V I

SV
I
P þ q2

0V
II
SV

II
P þ qq0sin

2u V I
SV

II
S þ V I

PV
II
P

� �
þ qq0cos

2

u V I
SV

II
P þ V II

SV
I
P

� �
. For Cm

ns, the superscript m ¼ P; S denotes the inci-

dent wave mode, while the subscripts n ¼ T; R and s ¼ P; S respec-
tively represent the transmitted and reflected waves and the
corresponding wave modes.

Likewise, for P-wave incidence, the transmission and reflection
coefficients are defined as

CP
TP ¼

2qV I
Pcosu q0V

II
S þ qV I

S

� �
D

; ð26Þ

CP
TS ¼ �

2qV I
Psinu qV I

S þ q0V
II
P

� �
D

; ð27Þ

CP
RP ¼

q2V I
SV

I
P�q2

0V
II
SV

II
P þqq0sin

2u V I
PV

II
P �V I

SV
II
S

� �
þqq0cos

2u V II
SV

I
P �V I

SV
II
P

� �
D

;

ð28Þ

CP
RS ¼ �

2qq0V
I
Psinucosu V II

P � V II
S

� �
D

: ð29Þ
3.1.1. A particular case: S-wave incidence in a neo-Hookean material
In the following, as an example of the mentioned theory, as well

as the theoretical basis for developing a neo-Hookean transforma-
tion device, the transmission and reflection of an S-wave between
an un-deformed neo-Hookean material and a pre-deformed one
are taken into account. The three-dimensional SEF of the neo-
Hookean material (Bertoldi and Boyce, 2008; Chang et al., 2015)
is simplified into a two-dimensional form as (Chen et al., 2017)

W ¼ k
2
ðJ � 1Þ2 � llnðJÞ þ l

2
ðI1 � 2Þ; ð30Þ

where I1 denotes the first invariant of the right Cauchy-Green tensor,
and k and l are the Lamé constants. Such a simplified form can
effectively analyze the propagation of in-plane elastic waves in
hyperelastic materials exhibiting finite plane-strain deformations.

Note that the P- and S-waves propagate in a pre-deformed neo-
Hookean material in their pure modes (Chen et al., 2017). Accord-
ingly, with u ¼ 0, Eq. (22)-(25) are simplified as

CS
TP ¼ 0; ð31Þ

CS
TS ¼

2qV I
S

qV I
S þ q0V

II
S

; ð32Þ



Fig. 2. Transmission and reflection of elastic waves at the interfaces between un-deformed and uniaxial-tensioned hyperelastic materials. (a)-(d), ‘‘constrained” uniaxial-
tension; (e)–(h), ‘‘ordinary” uniaxial-tension. (a) and (e) represent the schematic diagrams of the deformation modes, the dark and light grey zones represent the un-
deformed and pre-deformed hyperelstic material, respectively. (b) and (f) illustrate the steady-state displacement fields of u2j j, when the shear-wave beams are incident on
the square pre-deformed domains. (c) and (g) refer to the transient-state normalized displacement fields of D2 at t ¼ 0:01 s and t ¼ 0:029 s on the left (un-deformed) and
right (pre-deformed) sides of the interface. Moreover, (d) and (h) depict the amplitudes of D2 at the two snapshots, together with the theoretical results of CS

inc , C
S
RS, C

S
TS.
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CS
RP ¼ 0; ð33Þ

CS
RS ¼

qV I
S � q0V

II
S

qV I
S þ q0V

II
S

: ð34Þ

Eq. (31) and (33) indicate that no P-wave is generated during
the S-wave transmission. Eqs. (32) and (34) suggest that
CS

TS � CS
RS ¼ 1 and CS

RS � 0. The negative reflection coefficient is
attributed to the half-wave loss, revealing that the wave receives
a 180

�
phase shift.

3.2. Numerical method

To verify the mentioned theoretical results and the perfor-
mances of the subsequent soft devices, numerical simulations are
performed by a two-step model with the software COMSOL
Multiphysics.

First, the finite deformation of a hyperelastic material, comply-
ing with Eq. (1), is calculated with the module of structural
mechanics. As a result, the deformed geometry, together with the
deformation gradient Fij, is substituted into the wavefield analysis.
139
Second, i.e., the wavefield analysis, both steady-state and
transient-state analyses are conducted. On the whole, the steady-
state analysis intuitively suggests the wavefield distribution and
the direction of wave propagation, while the transient-state analy-
sis clearly differentiates the incident and reflected waves.

In the steady-state analysis, Eq. (5) is modeled with the module
of weak form PDE (Eriksson et al., 1996) to address the asymmetry
of the elastic tensor C0IjKl (Eq. (6)). A portion of pre-deformed neo-
Hookean material or a designed soft device (with Fij calculated in
the first step) is embedded in an un-deformed neo-Hookean
domain, as an example demonstrated in Fig. 2(b). On the periphery
of the un-deformed domain, perfectly matched layers (Chang et al.,
2014) (not shown) are adopted to avoid unnecessary reflection. An
S-wave Gaussian beam is introduced at an appropriate location as
required.

In the transient-state analysis, the module of weak form PDE is
also employed to solve Eq. (4). Fig. 2(c) indicates that two rectan-
gular domains act as the un-deformed and pre-deformed neo-
Hookean domains. A temporally bounded pulse of plane S-wave
with the excitation lasting for three wavelengths is imported at
the left boundary. The upper and lower boundaries are set as



Fig. 3. Transmission and reflection of elastic waves at the interfaces between un-deformed hyperelastic material and the one subject to (a)-(d) hydrostatic compression and
(e)–(h) simple-shear. (a) and (e) represent the implementation schemes of the deformation modes, the dark and light grey zones represent the un-deformed and pre-
deformed hyperelstic material, respectively. (b) and (f) denote the steady-state displacement fields of u2j j, when the shear-wave beams are incident on the square pre-
deformed domains. (c) and (g) indicate the transient-state normalized displacement fields of D2 at t ¼ 0:01 s and t ¼ 0:035 s on the left (un-deformed) and right (pre-
deformed) sides of the interface. Moreover, (d) and (h) depict the amplitudes of D2 at the two snapshots, together with the theoretical results of CS

inc , C
S
RS, and CS

TS.
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Floquet-Bloch periodic (Bloch, 1929), and the right boundary is not
constrained.

In all the following numerical simulations, k ¼ 4:32 MPa,
l ¼ 1:08 MPa, and q ¼ 1050 kg=m3are taken as the initial material
parameters of the neo-Hookean material, referring to a compress-
ible variant of material PSM-4 (Bertoldi and Boyce, 2008). For all
the wave modes, the amplitude of the wave source is set to
A ¼ 0:01 m. In steady-state analyses, the angular frequencies are
set to xst ¼ 3 kHz to avoid the divergence of the Gaussian beams.
In contrast in transient-state analyses, a much lower frequency
xtr ¼ 0:4 kHz is adopted to clearly show the amplitude of thewaves.

3.3. Particular cases for the pre-deformation

To gain some prior knowledge to design the soft device, three
typical deformations (namely, uniaxial tension, hydrostatic com-
pression, and simple-shear) are theoretically delved into. Numeri-
cal simulations are also performed to confirm the theoretical
results. More importantly, the validated numerical procedure can
140
then be followed to address inhomogeneous deformation where
the analytical approach is incapable.

3.3.1. Uniaxial tension
In the first case, the hyperelastic materials subject to uniaxial

tension are considered. The deformation can be achieved by apply-
ing a displacement x1 � X1 ¼ 0:667a m on the right boundary of an
a m� a m (a � 2) square hyperelastic material, with the rest
boundaries set as rollers (Fig. 2(a)). For such ‘‘constrained” uniaxial
tension, the components of the deformation gradient are
F11 ¼ 1:667, F22 ¼ 1 and F12 ¼ F21 ¼ 0. As a result, the elongation
ratio in X1-direction reaches g ¼ 1:667.

With the pre-deformation being maintained, a 2 m� 2 m
square (Fig. 2(a)) is cut out of the material and slotted into the
(un-deformed) background, as shown in Fig. 2(b). In terms of an
S-wave horizontally propagating through a portion of the pre-
deformed neo-Hookean material, the steady-state displacement
field u2j j is illustrated in Fig. 2(b). This figure presents that the
S-wave is not altered by the two interfaces it passes through,



Fig. 4. Schematic diagram and performance of the unidirectional cloak. (a) The implementation scheme of the unidirectional cloak. (b) A magnified view of the initial and
enlarged cavities. (c) and (d) Displacement field u2 in neo-Hookean material with and without the unidirectional cloak (purple line) for the incidence of an S-wave beam: (c)
uncloaked case: a cavity without cloak. (b) cloaked case: a cavity with a cloak of g ¼ 2.
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revealing that the ‘‘constrained” uniaxial tensioned neo-Hookean
material perfectly match with the un-deformed one. Such numer-
ical result complies with the theoretical calculation obtained by Eq.
(34) and Eq. (32), i.e., CS

TS ¼ 1 and CS
RS ¼ 0. According to the

transient-state analysis, two typical snapshots (t ¼ 0:01 s and
t ¼ 0:029 s) of the normalized displacement field D2 ¼ u2=A are
presented in Fig. 2(c). D2 distributions along the X1-direction in
the two snapshots are illustrated in Fig. 2(d), of which the theoret-
ical results are marked as horizontal dashed lines. It is therefore
indicated that the wavelength in the deformed domain at
t ¼ 0:029 s is g ¼ 1:667 times of that in the un-deformed one at
t ¼ 0:01 s. After the wave impinges at the interface, no backward
wave is generated.

If the upper and lower roller constrains in the ‘‘constrained” uni-
axial tension are relaxed, the uniaxial tension becomes an ‘‘ordi-
nary” one (Fig. 2(e)). Then, the components of the deformation
gradient turn as F11 ¼ 1:667, F22 ¼ 0:685, and F12 ¼ F21 ¼ 0. In this
case, the perfect matching ceases to exist. As revealed from the
steady-state wave field demonstrated in Fig. 2(f), as impacted by
the superposition of incident and reflected waves, the pre-
deformed neo-Hookeanmaterial exhibits higher field strength than
that in the un-deformed domain. The mismatch is illustrated in the
transient-state analysis (Fig. 2(g) and (h)). At t ¼ 0:029 s, the trans-
mitted wave exhibits a significantly lower amplitude than the inci-
dent one, and the reflection can be identified in the un-deformed
domain. Both the steady-state and transient-state analyses demon-
strate the theoretical results CS

TS ¼ 0:813 and CS
RS ¼ � 0:187.
3.3.2. Hydrostatic compression
In the second scenario, the hydrostatic compression is consid-

ered. For a square neo-Hookean domain exhibiting a side length of
141
a ð� 2Þ m, the deformation can be achieved with the left and lower
boundaries set to be rollers; meantime, the upper and right bound-
aries are set to the prescribed displacements of
x1 � X1 ¼ x2 � X2 ¼ �0:125a m (Fig. 3(a)). Accordingly, the compo-
nents of the deformation gradient are expressed as
F11 ¼ F22 ¼ 0:875 and F12 ¼ F21 ¼ 0. Though it is unlikely to be pre-
served in the steady-state wave field (Fig. 3(b)), the transient result
(Fig. 3(c) and (d)) indicates a slight impedance mismatch, as
assessed by the theoretical results CS

TS ¼ 0:933 and CS
RS ¼ � 0:067.
3.3.3. Simple-shear
In the third scenario, simple-shear deformation is considered.

As demonstrated in Fig. 3(e), the deformation can be achieved with
the prescribed body displacement x2 � X2 ¼ X1=3 mon the square
material domain, and the components of the deformation gradient
are F11 ¼ F22 ¼ 1, F21 ¼ 0:333 and F12 ¼ 0 correspondingly. Fig. 3(f)
indicates that the wave beam has been shifted together with the
simple-shear deformation, revealing the S-wave manipulation
capability of the neo-Hookean material. Meantime, no reflection
takes place when the wave beam is propagating through the mate-
rial (Fig. 3(f)–(h)).
4. Embedded neo-Hookean transformation devices for S-wave
manipulation

The mentioned theoretical and numerical investigations can
direct the design of embedded soft devices exhibiting tunable
properties. Here ‘‘tunable” implies that the performance of the soft
devices can be conveniently regulated by applying deformations of
different degrees on the identical soft material. Next, three devices
are proposed as examples.



Fig. 6. Schematic diagram and performance of the concave lens. (a) The implementation scheme of the lens. (b) The curl field in and out of the lens when an S-wave beam
incident takes place in X1-direction. (c) and (d) respectively represent the numerical simulation and theoretical prediction of the transmission CS

TS

� �
and reflection CS

RS

			 			� �
coefficients of the micro-elements on auxiliary segments L1 and L2.

Fig. 5. Schematic diagram and performance of the splicing beam bend. (a) The implementation scheme of the beam bend. (b) The curl field in and out of the beam bend when
an S-wave beam incident takes place in �X2-direction. (c) and (d) Numerical simulation and theoretical prediction of the transmission CS

TS

� �
and reflection CS

RS

			 			� �
coefficients of the micro-elements, on auxiliary segment L1 presented in (b).
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4.1. Unidirectional cloak

To suppress the scattering of a cavity in a neo-Hookean mate-
rial, a neo-Hookean material under ‘‘constrained” uniaxial tension
with the enlarge ratio g (Fig. 4(a)) is embedded into a rectangular
domain around the cavity. In such unidirectional cloak, a tiny cav-
ity is set in the proper position, so it can enlarge to the identical
size as the target cavity we want to conceal (Fig. 4(b)). On the left
and right boundaries far from the cavity, the homogeneous ‘‘con-
strained” uniaxial stress state ensures the reflectionless of the
cloak.

In the numerical simulation, an S-wave beam is horizontally
impinging on an elliptical cavity with its two semi-axes
a ¼ 57:20 mmand b ¼ 47:27 mm. In this scenario, Fig. 4(c) pre-
sents the distribution of the displacement u2 of the total elastic
field, indicating a significance scattering. As a result, the displace-
ment field of a cloaked cavity is illustrated in Fig. 4(d). With the
size of the initial elliptical cavity set to a0 ¼ 0:67 mm and
b0 ¼ 0:83 mm, the target cavity can be obtained by applying a
‘‘constrained” uniaxial tension with the enlarge ratio g ¼ 2 on a
neo-Hookean layer with initial width l ¼ 0:2 m (Fig. 4(a)). The
reflectionless of the cloak on its left and right interfaces are signif-
icantly identified. Meantime, the wavelength turns out to be g
times as long as the original one in the cloak region. The u2 field
out of the cloak region appears to be considerably smoother than
that in the case without the cloak. According to HTT, it is pre-
dictable that the larger the elongation ratio g, the more effectively
the scattering will be suppressed.

4.2. Splicing beam bend

By invoking HTT, an S-wave beam bend can be achieved by
bending a rectangular neo-Hookean material to a certain angle.
However, under the large angle, and the aspect ratio of the rectan-
gle is relatively small, instability and damage may happen in the
soft material. To avoid such failure, a splicing beam bend is pro-
posed, by which a significantly huge bending angle can be reached
by assembling several moderately deformed components. Fig. 5(a)
gives a schematic diagram of a splicing p=2 - bend. The beam bend
consists of two identical trapezoid components, each of which is
achieved by fixing one of the long sides of a rectangular neo-
Hookean material with length l ¼ 1:5 m and width d ¼ 1 m and
exploiting an appropriate boundary displacement (e.g.,
x2 � X2 ¼ X1 � 1:5 m for the component I, Fig. 5(a)) to the opposite
side. Meantime, the two short sides are constrained with rollers.

The curl field of an S-wave beam propagates through the beam
bend is illustrated in Fig. 5(b), suggesting an ideal wave manipula-
tion. At the seam of the two components of the beam bend, mate-
rial properties are identical, so no reflection takes place. At both the
inlet and outlet interfaces, the deformations are inhomogeneous.
To characterize the matching properties, the transmission and
reflection coefficients of six infinitesimal micro-elements on the
inlet (L1in Fig. 5(b)) are plotted in Fig. 5(c) and (d). Both theoretical
results and numerical simulations reveal that the transmission
coefficient is universally close to 1, while the reflection coefficient
is negligible. Through polar decomposing for the deformation gra-
dient (F11 ¼ 1:81, F12 ¼ �2:01� 10�6, F21 ¼ 0:336 and F22 ¼ 1) at
0:875; 2:75ð Þ, i.e., the midpoint of L1, the micro-element is
reported a ‘‘constrained” uniaxial-tensioned one (g ¼ 1:81), with
a negligible rotation angle of 2:1� 10�4p.

4.3. Concave lens

In the last example, a concave lens is proposed, thereby focus-
ing a plane S-wave to a point and then converting a plane wave
143
into a cylindrical one. A rectangular neo-Hookean material with
width l ¼ 3 m and hight d ¼ 6 mis considered. As depicted in
Fig. 6(a), the left boundary is fixed and the upper and lower bound-
aries are constrained with rollers. To focus the wave at 6; 0ð Þ m
from the lens (Fig. 6(b)), a displacement of

x1 � X1 ¼ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18� X2

2

q
m is applied at the right boundary of the

neo-Hookean domain.
According to the curl field plotted in Fig. 6(b), the horizontally

propagated wave beam is concentrated at the expected position.
The transmission and reflection coefficients on micro-elements of
the two interfaces (L1 and L2 in Fig. 6(b)) where the wave beam
passes through are ascertained. By adopting a similar deformation
mode as the mentioned beam bend, the micro-elements on L1 indi-
cate an approximate match with the background (Fig. 6(c)). How-
ever, along L2, mismatch takes places away from the axis of
symmetry (Fig. 6(d)). 8% of the transmission loss can be identified
at 1:6 m away from the axis of symmetry. Nevertheless, the perfor-
mance of the lens can be ensured with the satisfactory transmis-
sion coefficient in the region where the beam energy is primarily
distributed.

5. Conclusion and discussion

In this study, a systematic formulation of the transmission and
reflection of elastic waves between un-deformed and pre-
deformed hyperelastic materials is presented. As the problem is
equated with transmission and reflection between isotropic and
anisotropic medium with and without Cosserat form, the formula-
tion may also find applications in other engineering fields (e.g.,
geophysics (Thomsen, 1988; Malehmir and Schmitt, 2017)).

It is suggested that the neo-Hookean material with the SEF of
Eq. (30) exhibits an outstanding character in the soft device design,
since the elastic waves propagate in the neo-Hookean material in
pure-modes. On that basis, to make the S-wave device fit the back-
ground, ‘‘constrained” uniaxial tension or simple-shear deforma-
tion at the interface (perfect match) is recommended to be
exploited. Alternatively, it is also feasible to keep the input and
output interfaces un-deformed (perfect match) or deformed as
small as possible (approximate match). Though all the three
devices proposed here comply with ‘‘constrained” uniaxial tension,
one case of simple-shear deformation can be referenced in a design
of wave-mode splitter in a previous contribution (Chang et al.,
2015).

We hope this study may inspire a series of further research. In
this study, we only consider in-plane elastic waves. How the dis-
continuity result from the finite deformation affects the anti-
plane wave motion (Parnell, 2012; Zhang and Parnell, 2018) is also
worthy of investigation. It is also expected that if different hyper-
elastic models, various background medium, and arbitrary inci-
dence angle of elastic waves are considered, more sophisticated
but fruitful results can be anticipated. This may also provide more
freedom to design wave control devices with soft materials. This
work also promotes an interesting and challenging direction for
material fabrication. With the development of modern chemical
synthesis processes, more elaborate theory and methodology are
needed to precisely fabricate a material based on the criteria of a
particular SEF. Lastly, the viscoelastic effect of the material is
neglected here. Existing studies (Dykstra et al., 2019; Parnell and
De Pascalis, 2019) revealed that the effect is critical to shear waves
in rubber-like materials. Thus, a low-damping hyperelastic mate-
rial or other mechanisms to generate large deformation with low
wave attenuation (Goldsberry et al.,2019) is required in practical
applications.

Hopefully, this study may also provide some novel insights into
energy and information transmission in such fields as in non-
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destructive testing, impact protection, biomedical imaging, or soft
robotics.
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