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Abstract Twisting chirality is widely observed in artificial
and natural materials and structures at different length scales.
In this paper, we theoretically investigate the effect of twist-
ing chiral morphology on the mechanical properties of elas-
tic beams by using the Timoshenko beam model. Particular
attention is paid to the transverse bending and axial buckling
of a pre-twisted rectangular beam. The analytical solution is
first derived for the deflection of a clamped-free beam under
a uniformly or periodically distributed transverse force. The
critical buckling condition of the beam subjected to its self-
weight and an axial compressive force is further solved. The
results show that the twisting morphology can significantly
improve the resistance of beams to both transverse bending
and axial buckling. This study helps understand some phe-
nomena associated with twisting chirality in nature and pro-
vides inspirations for the design of novel devices and struc-
tures.
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1 Introduction

Twisting chirality is ubiquitous in both artificial and biolog-
ical materials and structures at different length scales. For
examples, gemini surfactants [1], chiral polymers [2], and
nanocrystalline materials [3] can self-assemble into twisted
ribbons. Most biological macromolecules (e.g., DNA, RNA,
and proteins) also take helical morphologies [4, 5]. Some
biological cells (e.g., spirally striated muscle cells in inverte-
brates [6]), bacteria (e.g., Helicobacter pylori [7]), and tis-
sues (e.g., Towel Gourd tendrils [8]) have helical shapes,
which are of crucial significance to achieve their biologi-
cal functions [9, 10]. For illustration, Fig. 1a shows some
twisting carbon nanostructures prepared on a glass sub-
strate using sputter-coated Fe-base alloy catalysts [11], and
Fig. 1b shows a Paphiopedilum dianthum flower with twist-
ing petals [12], respectively. Besides, twisting structures
have technologically important applications in the fields of
aviation and engineering, e.g., helicopter blades, turbine
blades, propellers, and gears.

In theoretical analysis, twisting structures are com-
monly modeled as pre-twisted bars, rods, or beams.
Carnegie [13, 14], Lin and Hsiao [15], and Zhu [16] analyzed
the vibration of pre-twisted blades for satellite booms and
aircraft rotary wings by employing both Euler’s and Tim-
oshenko’s beam models. Schulgasser and Witztum [9] fo-
cused on the stability of slender leaves with chiral configu-
rations, e.g., Pancratium. Recently, Ye et al. [2] and Wang
et al. [17] investigated, both experimentally and theoretically
the surface stress effect on the twisting chirality of lamellar
crystals and nanomaterials by using a refined Kirchhoff rod
model.

The transverse bending and axial buckling behaviors
of twisted materials are an issue of particular interest.
Carnegie [18] theoretically and experimentally examined the
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Fig. 1 a A twisting micro-ribbon produced by Ni catalyst under a magnetic field [11]; b Twisting flower petals of Paphiopedilum
dianthum [12]

static bending of pre-twisted cantilever beams with different
twist angles from 0◦ to 90◦. Subrahmanyam et al. [19] ac-
counted for the effect of transverse shear deformation and
Abid et al. [20] performed finite element simulations to in-
vestigate the bending properties of pre-twisted beams. Re-
cently, Chen [21, 22] analyzed the bending deflections of a
pre-twisted beam subjected to uniformly distributed trans-
verse forces. Ziegler [23, 24] derived the Euler buckling
equations of a pre-twisted beam, and Lüscher [25] solved
them for the case of cantilever beam. Leipholz [26] and Nix-
dorff [27] analyzed the axial buckling of a pre-twisted elastic
rod based on the Kirchhoff rod theory. Considering the ef-
fect of shear deformation, Tabarrok et al. [28] provided the
governing equations for the buckling of a pre-twisted beam
under axial compression. Despite of these previous simpli-
fied studies, it remains elusive how the twisting chirality of a
beam affects its mechanical properties and why many plants
(e.g., Typha and Narcissus) take the twisting morphologies.

In practical environments, aquatic macrophytes are
subjected to both self-weight and wind loads. Through mil-
lions of years of evolution by natural selection, the emer-
gent bulks of some aquatic macrophytes have formed an op-
timal morphology with enhanced mechanical properties. In
the present paper, inspired by these natural phenomena, we
analyze the transverse bending and axial buckling of a pre-
twisted beam by using the Timoshenko beam model. The
deflection of a clamped-free beam under a uniformly or pe-
riodically distributed transverse force is first derived in an
explicit form. The critical buckling condition of the beam
subjected to both self-weight and axial compression is subse-
quently solved. The effects of twist angle, cross-sectional as-
pect ratio, and loading conditions are examined. The results
demonstrate that twisting a rectangular beam into a chiral
morphology can improve its resistance ability to both trans-
verse bending and axial buckling.

2 Theoretical model

A pre-twisted rectangular beam is sketched in Fig. 2a. Let b,
h, and L denote respectively its width, thickness, and length,
with b � h. The beam has a twist angle θ = θL, where θ
denotes the twist angle per unit length along the longitudi-
nal direction. Denote the cross-sectional aspect ratio of the

beam as

μ =
b
h
. (1)

Refer to a Cartesian coordinate system (x, y, z), as
shown in Fig. 2b, where {iii, jjj, kkk} are the orthonormal unit
basis vectors, the origin o is located at the cross-sectional
centroid at the clamped end of the beam, x, y, and z axes
are parallel to the width, thickness, and length directions, re-
spectively. Besides, we introduce a twist coordinate system
(X, Y, Z) fixed to the cross section of the beam. The Z axis
coincides with z, while the rotating X and Y axes are along
the two cross-sectional principal directions of the beam.

In terminology of the Timoshenko beam theory, intro-
duce four generalized displacements: ux and uy denote the
deflections of the cross-sectional centroid, φx and φy denote
the rotating angles of its cross section in the x and y direc-
tions, respectively. As shown in Fig. 2c, the cross section has
the pre-existed rotating angle θz about the z axis. The normal
strain at position (x, y, z) is written as

εz = x
dφy

dz
+ y

dφx

dz
. (2)

Assume that the material is linear elastic and isotropic. Then
the bending moments Mx and My along the x and y directions
on the cross section can be derived as

Mx =

∫∫

A

EεzydA = EIxx
dφx

dz
+ EIxy

dφy

dz
,

My =

∫∫

A

EεzxdA = EIxy
dφx

dz
+ EIyy

dφy

dz
,

(3)

where E is the Young’s modulus and A represents the cross-
sectional area of the beam. The area moments of inertia Ixx

and Iyy, and the polar moment of area Ixy are expressed as

Ixx = IX cos2(θz) + IY sin2(θz),

Iyy = IX sin2(θz) + IY cos2(θz),

Ixy = (IY − IX) sin(θz) cos(θz),

(4)

respectively, where IX = bh3/12 and IY = b3h/12 designate
the principal area moments of inertia of the cross section.
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Fig. 2 a A pre-twisted rectangular cantilever beam; b Its model with the global coordinate system (x, y, z) and local coordinate system
(X,Y,Z), and c the rectangular cross section

We analyze the pre-twisted beam by using the principle
of minimum potential energy. The elastic strain energy of
the beam due to bending can be calculated by

Ub =
1
2

∫ L

0

[
EIxx

(dφx

dz

)2
+ 2EIxy

dφx

dz

dφy

dz

+EIyy

(dφy

dz

)2]
dz. (5)

Besides, the elastic strain energy Us of the beam due to shear
deformation is

Us =
1
2

∫ L

0
κGA
[(dux

dz
− φy

)2
+

(duy

dz
− φx

)2]
dz, (6)

where G = E/[2(1 + ν)] is the shear modulus and κ is the
shearing correction factor. For rectangular beams, κ is as-
certained as 0.83 [29]. Consequently, the total elastic strain
energy U of the beam is

U = Ub + Us. (7)

3 Bending

Many twisting materials are subjected to distributed trans-
verse loads along the length direction, e.g., the leaves of
plants and flower petals in wind, the rotary wings in airflow,
and the propellers in stream. Transverse loads applied on
the pre-twisted beams are often in a periodical form along
the longitudinal direction. Therefore, we here investigate
the bending property of the pre-twisted cantilever beam sub-
jected to periodically distributed transverse force. The uni-
formly distributed force is one of its degenerated cases. Sup-
pose that the transverse force passes through the neutral axis,
i.e., z. We first derive the analytical solution for the case of
the transverse force fff in the y direction, i.e.,

fff (z) = fy(z) jjj. (8)

For illustration, assume that the force acting on the beam is

proportional to the upstream area. Then the transverse force
fy with intensity f y per unit area has the form of

fy = f1 + f2|cos(θz)|, 0 � z � L, (9)

where f1 = h f y and f2 = (b − h) f y. The form of forces in
Eq. (9) can be easily extended to more general distributed
forces by using the Fourier series expansion, as will be
shown below. When 0◦ � θ � 90◦, the potential energy
V f of the external forces is written as

V f = −
∫ L

0
[ f1 + f2 cos(θz)]uydz. (10)

LetΠ = U+V f denote the total potential energy of the beam
system. According to the principle of minimum potential
energy, the beam at the equilibrium state has the following
variational relation

δΠ = δ(U + V f ) = 0. (11)

Note that due to the chiral morphology of the beam, the force
in the y direction will induce both deflections in the x and
y directions, ux and uy. Substituting Eqs. (7) and (10) into
Eq. (11) leads to a set of static equilibrium equations of the
pre-twisted cantilever beam

d2ux

dz2
=

dφy

dz
,

d2uy

dz2
= − f1 + f2 cos(θz)

κGA
+

dφx

dz
,

d
dz

(
Ixx

dφx

dz
+ Ixy

dφy

dz

)
=
κGA

E

(
φx − duy

dz

)
,

d
dz

(
Ixy

dφx

dz
+ Iyy

dφy

dz

)
=
κGA

E

(
φy − dux

dz

)
,

(12)

and eight boundary conditions at z = 0 and z = L

ux|z=0 = uy

∣∣∣
z=0
= φx|z=0 = φy

∣∣∣
z=0
= 0, (13)
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κGA
(dux

dz
− φy

)∣∣∣∣∣
z=L
= κGA

(duy

dz
− φx

)∣∣∣∣∣∣
z=L

=

(
EIxx

dφx

dz
+ EIxy

dφy

dz

)∣∣∣∣∣∣
z=L

=

(
EIyy

dφy

dz
+ EIxy

dφx

dz

)∣∣∣∣∣∣
z=L

= 0. (14)

Now we attempt to solve the deflections ux and uy in terms of
the coupled ordinary differential equations. Using the free-
end (z = L) boundary conditions in Eq. (14), the static equi-
librium equations (12) are recast as

dux

dz
= φy,

duy

dz
=

f1θ(L − z) + f2[sin(θL) − sin(θz)]

κGAθ
+ φx,

Ixx
dφx

dz
+ Ixy

dφy

dz
=

f1(L − z)2

2E

+
f2[cos(θL) − cos(θz) + θ sin(θL)(L − z)]

Eθ
2

,

Ixy
dφx

dz
+ Iyy

dφy

dz
= 0.

(15)

The area moments of inertia Ixx and Iyy and the polar mo-
ment of area Ixy in Eq. (15) can be expressed by the principal
moments of inertia IX and IY from Eq. (4). Substituting the
clamped-end (z = 0) boundary conditions into Eq. (15) leads
to the following relations

d2ux

dz2
=

(IX − IY ) sin(2θz)
4IXIY E

f1(L − z)2

+
(IX − IY) sin(2θz)

2IXIY Eθ
2

× f2[cos(θL) − cos(θz) + θ sin(θL)(L − z)],

ux|z=0 = 0,
dux

dz

∣∣∣∣∣
z=0
= 0,

d2uy

dz2
= − f1 + f2 cos(θz)

κGA

+
IX sin2(θz) + IY cos2(θz)

2IXIY E
f1(L − z)2

+
IX sin2(θz) + IY cos2(θz)

IX IY Eθ
2

× f2[cos(θL) − cos(θz) + θ sin(θL)(L − z)],

uy

∣∣∣
z=0
= 0,

duy

dz

∣∣∣∣∣∣
z=0

=
f1θL + f2 sin(θL)

κGAθ
.

(16)

Thus the governing equations have been translated into two
coupled second-order ordinary differential equations with
four boundary conditions. From Eq. (16), the deflections in
the x and y directions are derived as

ux =
IX − IY

144θ
4
EIXIY

(9 f1C1x + 2 f2C2x),

uy =
1

288θ
4
EIY

(3 f1C1y + f2C2y),
(17)

where

α = θz, β =
EIY

κGAL2
, (18)

and the expressions of C1x, C2x, C1y, and C2y are given in
Appendix A.

Thusfar, we have obtained the analytical solution for
the deflections of a pre-twisted beam subjected to a period-
ically distributed transverse force fy. The force is decom-
posed into two parts, namely, a constant f1 and a cosine func-
tion f2 cos(θz). By letting f2 = 0, the solution in Eq. (17)
reduces to the case of uniformly distributed transverse force
f1 [21]. By contrast, if f1 = 0, the solution corresponds to a
distributed force fy expressed by a cosine function. In more
general cases, the distributed force exerted on the pre-twisted
cantilever beam can be expressed by a series of cosine func-
tions. Then, we can determine the deflections of the beam
resorting to the superposition principle. For example, when
θ > 90◦, the transverse force fy in Eq. (9) can be expanded as

fy = f1 + f2
∣∣∣cos(θz)

∣∣∣ = f1 + f2a0 + f2
∞∑

n=1

an cos
(nπz

L

)
, (19)

where the coefficients a0 and an are given by

a0 =
1
L

∫ L

0

∣∣∣∣cos(θz)
∣∣∣∣dz =

∫ 1

0

∣∣∣∣cos(θz)
∣∣∣∣dz,

an =
2
L

∫ L

0

∣∣∣∣cos(θz)
∣∣∣∣ cos
(nπz

L

)
dz

= 2
∫ 1

0

∣∣∣∣cos(θz)
∣∣∣∣ cos(nπz)dz.

(20)

The normalized coordinate z = z/L varies from 0 to 1. Thus
it is easy to derive the explicit solution for the displacements
ux and uy from Eq. (17).

Further we consider the case when the distributed trans-
verse force fff is along the x direction. Let θ0 denote the di-
rection of fff measured clockwise from the y direction. When
θ0 = 90◦, the force fff is expressed as

fff (z) = fx(z)iii. (21)

The transverse force fx with intensity f x per unit area has the
form of

fx = f3 + f4
∣∣∣cos(θz)

∣∣∣ , 0 � z � L, (22)

where f3 = b f x and f4 = (h − b) f x.
In the case when the pre-twisted beam is only subjected

to the distributed transverse force fx (i.e., θ0 = 90◦). The
analytical solutions of the deflections ux and uy of the beam
can also be readily determined following a similar procedure,
which is omitted here for short.
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4 Euler buckling

In nature, a slender twisting bulk of such aquatic macro-
phytes as Sagittaria trifolia subjects to not only its own
weight but also concentrated forces acting on its upper end
(e.g., the weight of head organs). Inspired by this biologi-
cal phenomenon, we also consider the Euler buckling of a
pre-twisted cantilever-free beam subjected to a distributed
compressive force (self-weight) q = ρgA and a concentrated
compressive load P acting at the free end, where ρ is the
mass density of the beam and g is the gravitational acceler-
ation. By neglecting the axial normal strain εz of the beam,
the displacement uz of the cross-sectional centroid in the z
direction at z = z̃, caused by the lateral deformations, is cal-
culated by

uz(z̃) =
∫ z̃

0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
√

1 −
(dux

dz

)2
−
(duy

dz

)2
− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ dz

= −1
2

∫ z̃

0

[(dux

dz

)2
+

(duy

dz

)2

+o
((dux

dz

)2
,
(duy

dz

)2)]
dz. (23)

The potential energies of the external forces include

Vq = −qL
2

∫ L

0

(
1 − z

L

)[(dux

dz

)2
+

(duy

dz

)2]
dz,

VP = −P
2

∫ L

0

[(dux

dz

)2
+

(duy

dz

)2]
dz.

(24)

Let Π = U + Vq + VP represent the total potential energy
of the beam. The principle of minimum potential energy re-
quires that

δΠ = δ(U + Vq + VP) = 0. (25)

Besides, the boundary conditions are

ux|z=0 = uy

∣∣∣
z=0
= φx|z=0 = φy

∣∣∣
z=0
= 0. (26)

The finite element method is employed to solve the crit-
ical length of the pre-twisted beam. Discretize the beam
into nE equal-length elements along its longitudinal direc-
tion, with each element containing nN nodes. Then the four
generalized displacements can be represented by

ux =

nN∑
i=1

Ni(ξ)u1i, uy =

nN∑
i=1

Ni(ξ)u2i,

φx =

nN∑
i=1

Ni(ξ)φ1i, φy =

nN∑
i=1

Ni(ξ)φ2i,

(27)

where u1i, u2i, φ1i, and φ2i are the generalized displacements
at the i-th node, and the subscripts 1 and 2 labeling the x
and y directions, respectively. Ni(ξ) is the i-th shape function
of the element and ξ is the local coordinate. Let zt denote
the z coordinate at the midpoint of the element t. The local
coordinate ξ, varying in the range [−1, 1], is expressed as

ξ =
2
lE

(z − zt) =
2z
lE
− 2t + 1, t = 1, 2, · · · , nE, (28)

where lE is the length of the element. From Eq. (28), the
derivative of the shape function with respect to z is

dNi(ξ)
dz

=
dNi(ξ)

dξ
dξ
dz
=

2
lE

dNi(ξ)
dξ
. (29)

Thus, the total potential energy Π in Eq. (25) is written as

Π =

nE∑
t=1

Πt, (30)

where Πt is the potential energy of element t. Substituting
Eqs. (27) and (30) into Eq. (25) results in

∂Πt

∂u1i
=
∂Πt

∂u2i
=
∂Πt

∂φ1i
=
∂Πt

∂φ2i
= 0,

t = 1, 2, · · · , nE; i = 1, 2, · · · , nN. (31)

For element t, 4nN linear algebraic equations are then ob-
tained as

KKK(t)ddd(t) = 000, (32)

where KKK(t) is the 4nN × 4nN element stiffness matrix. Its
nonzero components can be derived from Eqs. (28), (29), and
(31) and are given in Appendix B. The 4nN×1 node displace-
ment column matrix ddd(t) of element t is defined by

ddd(t) = [u11, u21, φ11, φ21, · · · , u1i, u2i, φ1i, φ2i, · · · ,
u1nN , u2nN , φ1nN , φ2nN ]T. (33)

Assembling the element matrices into the global matrix
yields

KKK · ddd = 000, (34)

where KKK and ddd are the global stiffness matrix and node
displacement column matrix, respectively. To impose the
boundary conditions in Eq. (26), we remove the first four
rows and columns of KKK and the first four rows of ddd and de-
note the reduced matrices as KKKr and dddr, respectively. Then
Eq. (34) becomes

KKKr · dddr = 000. (35)

It has an untrivial solution of dddr only when the coefficient
matrix KKKr is singular, i.e., det(KKKr) = 0. From this condition,
the critical length of buckling of the pre-twisted beam can be
obtained and denoted as Lcr.

It is emphasized that the above method allows us to eas-
ily examine the effects of twist angle, cross-sectional aspect
ratio, and loading conditions on the buckling behavior of pre-
twisted beams, as shown in the next section.

5 Results and discussions

5.1 Effect of chirality on bending deformation

For a pre-twisted cantilever beam under transverse bending,
normalize its coupled deflections ux and uy by
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ux =
ux

L
, uy =

uy

L
. (36)

Besides, let Ux and Uy denote the deflections in the x and y
directions at the free end, respectively. Normalize them and

the total deflection Utotal =
√

U2
x + U2

y as

Ūx =
Ux

U (0)
y

, Ūy =
Uy

U (0)
y

, Ūtotal =
Utotal

U (0)
y

, (37)

where U (0)
y denotes the value of Uy when θ = 0◦.

For example, we take the following parameters of the
beam: length L = 1 m, width b = 0.01 m, thickness h =
0.001 m (cross-sectional aspect ratio μ = 10), Young’s mod-
ulus E = 1 GPa, Poisson’s ratio ν = 0.3, and force inten-
sity f x = 0 N/m2 and f y = 0.1 N/m2. The Fourier series
in Eq. (19) is expanded to the first 20 terms. For different
twisting angles θ = 0◦, 180◦, 360◦, and 720◦, the normal-
ized deflections ux and uy of the twisted beam are plotted
in Fig. 3. The solid lines are calculated from our theoretical
model, and the dots are obtained from finite element simula-
tions. They have a good agreement, demonstrating the high
accuracy of the analytical solution. At the free end, the de-

flection in the x direction is much smaller than that in the y
direction. The deflection Uy of a pre-twisted beam (see the
curves of θ = 180◦, 360◦, and 720◦) are distinctly smaller
than that of a straight beam with θ = 0◦. Therefore, twist-
ing a beam into a chiral morphology can greatly improve its
resistance ability to bending.

Besides, let the thickness h change continuously from
0.01 to 0.001 m, corresponding to the change of the cross-
sectional aspect ratio μ from 1 to 10. The variations of the
normalized free-end deflections Ūx and Ūy with respect to μ
are plotted in Fig. 4. For pre-twisted beams subjected to the
distributed force in the y direction, both the normalized de-
flections Ūx and Ūy decrease with increasing θ, and the latter
decreases more rapidly. When the beam has a square cross
section (i.e., μ = 1), the normalized deflections Ūx = 0 and
Ūy = 1 will not vary with the twist angle θ.

Figure 5 shows that the improving effect of pre-twisting
on the bending resistance of a beam becomes more and more
substantial as θ increases from 180◦ to 720◦. For exam-
ple, the free-end deflection Ūtotal of a pre-twisting beam with
μ = 10 and θ = 720◦ is lower about 64.9% than that of the
corresponding flat beam. By setting f2 = 0 and keeping the

Fig. 3 Variations of the normalized deflections a ux and b uy of the beam with respect to the normalized coordinate z, where the dots are
the results from finite element simulations

Fig. 4 Normalized deflections a Ūx and b Ūy at the free end as functions of the cross-sectional aspect ratio μ
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other parameters unchanged, we further investigate the de-
generated case that the pre-twisted beam is subjected to a
uniformly distributed transvers force. The variations of the
normalized free-end deflections Ūtotal with regard to μ are
complementally plotted in Fig. 5 with dashed lines. It is clear
that for a specified μ, the normalized free-end deflection
Ūtotal induced by the periodically distributed force is much
smaller than that induced by the uniformly distributed force.
This indicates that both the smaller upstream area and the
higher bending stiffness can be achieved by pre-twisting the
beam.

Fig. 5 Variations of the normalized deflections Ūtotal of the beam
with respect to the cross-sectional aspect ratio μ

5.2 Effect of chirality on axial buckling

In the buckling analysis of a slender beam subjected to the
self-weight q and the concentrated compressive force P, in-
troduce the dimensionless load ratio

χ =
P

qLref
, (38)

where Lref is a reference length. Let L0 and Lcr denote the
critical buckling length for a straight and untwisted beam
with θ = 0◦ and a twisted beam, respectively. The dimen-
sionless parameter

η =
Lcr

L0
− 1 (39)

is used to quantify the effect of twisting chirality on the crit-
ical length of buckling.

In the examples, we take the following representa-
tive values of geometric and material parameters: refer-
ence length Lref = 1 m, width b = 0.01 m, thickness h =
0.002 m (cross-sectional aspect ratio μ = 5), Young’s mod-
ulus E = 1 GPa, Poisson’s ratio ν = 0.3, mass density ρ =
1 × 103 kg/m3, and gravitational acceleration g = 10 N/kg.
Three typical loading conditions with the load ratio χ = 0, 1,
and ∞ are compared, which correspond to (1) P = 0, q > 0;
(2) P = q > 0; and (3) P > 0, q = 0, respectively.

The enhancing effect of twisting chiral morphology on
the buckling length is shown in Fig. 6 in terms of the param-

eter η as a function of the twist angle θ. The results in the
special case χ = 0 coincide well with that of Nixdorff [30],
who neglected the shear deformation effect. For untwisted
beams (i.e., θ = 0◦), the present result reduces to the classi-
cal Euler buckling solution based on the Timoshenko beam
model [31]. It is seen from Fig. 6 that for twisted beams, η is
always positive and increases with increasing twist angle θ.
For example, in the case of θ = 720◦ and χ = ∞, the critical
length Lcr increases about 33.5% due to the effect of twisting
chirality. For a specified θ, the larger the load ratio χ, the
higher the critical length Lcr. When θ = 720◦, for instance,
the value of η increases about 61.6% as χ changes from 0
to 1. Therefore, the enhancing effect of twisting chirality is
more significant for a beam subjected to a concentrated force
than that under a distributed force. Furthermore, it is noticed
that the η− θ curves, especial when the concentrated force P
is relatively large (e.g., χ = 1 and χ = ∞), show some slight
wavy variations. This is reasonable and can be understood
as follows. For the beam with a larger cross-sectional aspect
ratio μ, the increase in the buckling length with increasing
twist angle θ is non-uniform but has small fluctuations with
a period of 180◦.

Fig. 6 Variations of the increment η of the beam as a function of
the twist angle θ, where μ = 5

In addition, we investigate the effect of cross-sectional
aspect ratio μ on the buckling behavior of pre-twisted beams.
For the fixed width b = 0.01 m, we vary the thickness h from
0.01 to 0.001 m, corresponding to the increase of μ from 1
to 10. For three typical loading modes, the corresponding
variations of the normalized critical length increment η with
respect to μ are shown in Fig. 7. It is seen that η increases
first rapidly and approaches a constant. Pre-twisting has no
effect on the axial buckling resistance when the beam has a
square cross section (i.e., μ = 1). For a beam with larger μ,
one can achieve a more significant enhancement in the crit-
ical buckling length by twisting it into a chiral morphology.
For example, when μ = 10, θ = 360◦, and χ = ∞, the crit-
ical buckling length Lcr of the twisted beam is about 29.4%
larger than the corresponding straight and untwisted beam.
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Fig. 7 Variations of the increment η of the beam with respect to the
cross-sectional aspect ratio μ

6 Conclusions

This paper discusses the effect of twisting chiral morphol-
ogy on the mechanical properties of beams, in particular,
their transverse bending and axial buckling. An analytical
solution has been derived for the deflections of a pre-twisted
beam under periodically distributed transverse force. The
critical buckling condition has also been obtained for a pre-
twisted beam subjected to both self-weight and axial force.
The results show that twisting a beam can significantly im-
prove its resistance ability to both bending and Euler buck-
ling. By this mechanism, such aquatic macrophytes as Sagit-
taria trifolia can grow higher, with efficient material utiliza-
tion and superior ability against deformation and buckling.
This also inspires us to design and optimize engineering de-
vices (e.g., sensors and actuators) and structures with en-
hanced performance.

Appendix A: Parameters of Eq. (17)

The expressions of C1x, C2x, C1y, and C2y in Eq. (17) are given
as

C1x =

[3
2
− (θ − α)2

]
sin(2α) + 2(θ − α) cos(2α)

−2θ + (2θ2 − 1)α,

C2x = 2[10 + 2 cos(2α) − 9 cos(θ − α)

−9(θ − α) sin θ cosα] sinα

+18α
(

cos θ + θ sin θ − 4
3

)
,

C1y = 48βθ2α(2θ − α) + 2α2(1 + μ2)(6θ2 − 4θα + α2)

+3(1 − μ2){[2(θ − α)2 − 3] cos(2α)

+4(θ − α) sin(2α) + 3 − 2θ2 − 4θα},
C2y = 288[(1 + βθ2)(cosα − 1) + βθ2α sin θ]

+24α2(1 + μ2)(3 cot θ + 3θ − α) sin θ

+4(1 − μ2){56 − 54 cosα − 2 cos 3α

+9[sin(2α) − α cos(2α) − α
−2(cot θ + θ) sin2 α] sin θ}.

(A1)

Appendix B: Parameters of Eq. (32)

The non-zero components of KKK(t) in Eq. (32) include

K(t)
4(i−1)+1,4( j−1)+1 = K(t)

4(i−1)+2,4( j−1)+2

=
2κGA
EIXlE

∫ 1

−1

dNi

dξ

dNj

dξ
dξ

−2(qnElE + P)
EIXlE

∫ 1

−1

dNi

dξ

dNj

dξ
dξ

+
2q
EIX

∫ 1

−1

z
lE

dNi

dξ

dNj

dξ
dξ,

K(t)
4(i−1)+1,4( j−1)+4 = K(t)

4(i−1)+2,4( j−1)+3

= − κGA
EIX

∫ 1

−1

dNi

dξ
Njdξ,

K(t)
4(i−1)+3,4( j−1)+2 = K(t)

4(i−1)+4,4( j−1)+1

= −2κGA
EIX

∫ 1

−1
Ni

dNj

dξ
dξ, (A2)

K(t)
4(i−1)+3,4( j−1)+4 = K(t)

4(i−1)+4,4( j−1)+3

=
2(μ2 − 1)

lE

∫ 1

−1
sin
( 2θz
nElE

)dNi

dξ

dNj

dξ
dξ,

K(t)
4(i−1)+3,4( j−1)+3 =

κGAlE

EIX

∫ 1

−1
NiNjdξ

+
4
lE

∫ 1

−1

[
1 + (μ2 − 1) sin2

(
θz

nElE

)]dNi

dξ

dNj

dξ
dξ,

K(t)
4(i−1)+4,4( j−1)+4 =

κGAlE

EIX

∫ 1

−1
NiNjdξ

+
4
lE

∫ 1

−1

[
1 + (μ2 − 1) cos2

(
θz

nElE

)]dNi

dξ

dNj

dξ
dξ,

t = 1, 2, · · · , nE; i, j = 1, 2, · · · , nN.
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