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a b s t r a c t

The elasticwave band structure in a phononic crystal (PC) is usually affected by the deformations in its soft
constituent phase. In this work, hyperelastic transformationmaterials are proposed in the design of PCs in
order to achieve stable elastic band-gaps that do not vary with deformation. It is demonstrated that one-
dimensional PCs with a semi-linear soft phase can keep all elastic wave modes unchanged with respect
to external deformations. However, only S-wave modes can be precisely retained in the PCs made of a
neo-Hookean soft material. The theoretical results and the robustness of the proposed PCs are validated
by numerical simulations.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Phononic crystals (PCs) [1,2] have found a diversity of
technologically significant applications. In particular, they have
been used in, for instance, filters [3], waveguides [4,5], and
sensors [6] tomanipulate acoustic and elastic waves. The phononic
band structure and dispersion relations can be tailored with
appropriate choice of either geometrical/material properties [7–9]
or external stimuli [10–12]. In this sense, soft materials play an
important role in the performance of PCs. For example, rubbery
materials can be utilized to enhance the resonance effect of
locally resonant sonic crystals [9]. In recent years, the applications
of soft materials in PCs have attracted much attention due to
their high sensitivity to deformations [13] and their ability of
reversible structural instability [14,15]. These essential features of
soft materials open a promising route to realizing PC devices with
tunable band-gaps [16,17].

In many applications, stable band-gaps that do not vary
with external stimuli are required in the PCs serving in harsh
environmentswith, for instance, large structural deformations and
vibrations. The design of such PCs is a challenging issue because
soft materials may lose the aforementioned advantages in some
harsh circumstances.
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Recently, the hyperelastic transformation theory [18–20] has
been proposed as a new tool to manipulate elastic waves. Impor-
tantly, this theory reveals that hyperelastic transformation media,
such as semi-linear materials [18] and neo-Hookeanmaterials [19,
20] can behave like smart transformation metamaterials [21] and
possess a space invariance in wave applications. These properties
shed light on the possibility to design PCs with soft components
that have stable band-gaps under external mechanical stimuli.

In this Letter, by invoking the hyperelastic transformation
theory, we investigate the band-gap structures of PCs with
a hyperelastic transformation medium as the soft component.
Considering two classes of typical hyperelastic media—semi-
linear materials and neo-Hookean materials, we propose a type
of one-dimensional (1D) PCs that manifests unique or partial
unique band structures under finite deformations in their soft
components. The performance of such PCs serving in a more
realistic situation is analyzed, in which the soft component
is subjected to random mechanical deformation with varying
magnitudes. Both theoretical analysis and numerical simulations
demonstrate the robustness of band structures in the proposed
PCs.

2. Phononic crystalswith hyperelastic transformationmaterial

Consider a 1D layered structure in which a stiff and linear
elasticmaterial (A) and a soft hyperelasticmaterial (B) are arranged
alternately along the x direction, as shown in Fig. 1(a). In the initial
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Fig. 1. Schematic diagram of the proposed PC. (a) Initial configuration, and (b) deformed configuration of the PC. The soft component is subjected to uniaxial stretch with
the elongation strain ε in the x direction. The P- and S-waves propagate in the x direction. (c) A primitive cell of the PC for predicting the elastic band structures. (d) First
Brillouin zone for the primitive cell. The band structure in the reciprocal lattice vector space (kx, ky) is considered. (e) A super cell consisting of eight primitive cells for the
transmission spectrum analysis of the PC.
configuration, each stiff layer and soft layer have the thicknesses
of aA and aB, respectively. The stiffness of the stiff layers is
much higher than that of the soft ones such that band-gaps
with a considerable width can be created. Therefore, we neglect
the deformations in the stiff layers and the externally applied
deformations are fully undertook by the soft layers. For simplicity,
assume that the device is subjected to only uniaxial tension or
compression in the x direction, as shown in Fig. 1(b).

The small-on-large theory [22] is utilized to describe the linear
elastic wave motion in the hyperelastic material. The governing
equation of elastic wave motion reads

∇ · (C : ∇u) = ρutt , (1)

where u is the displacement vector, C and ρ are the fourth-
order tangent stiffness tensor and the effective mass density,
respectively. C and ρ are expressed as

Cijkl = J−1FiαFkβC0αjβl, ρ = J−1ρ0, (2)

where Fij are the components of the deformation gradient tensor
F, J = det(F), C0 and ρ0 are the initial tangent stiffness tensor and
the initial mass density, respectively. C0 can be determined by [22]

C0 =
∂2W
∂F∂F

, (3)

where W is the strain energy function of the soft material.
First, we assume that the strain energy function W in the soft

component has a semi-linear form [18]

W =
λ0

2
(i1 − 3)2 + µ0


(i1 − 1)2 − 2i2 + 2


, (4)

where i1 = Uii and i2 =
1
2 (UiiUjj − UijUji) are two invariants of the

tensor U =

FT · F

1/2
, λ0 and µ0 are the initial Lamé constants

of the material. According to the hyperelastic transformation
theory [18], the semi-linear strain energy function manifests
an analogy between the pushing forward operation (Eq. (2)) in
the small-on-large theory and the asymmetric transformation
relations [23] in the traditional elastodynamic transformation
theory [24] when its deformation is free of rotation. This means
that the wave responses of the deformed PC shown in Fig. 1(b) will
be the same as its initial configuration in Fig. 1(a). In other words,
the band structure of the PC is stable and does not vary with the
applied deformation.
In the second situation, we assume that the hyperelastic
material obeys the neo-Hookean constitutive relation. Its strain
energy function is [20]

W =
λ0

2
(J − 1)2 − µ0 ln J +

µ0

2
(I1 − 3), (5)

where I1 = Gii is the first invariant of the right Cauchy–Green
tensor G = FT · F. For the neo-Hookean material expressed
in Eq. (5), however, the analogy between the pushing forward
relation and the asymmetric transformation relation holds only for
S-waves [20]. Therefore, we cannot obtain a unique band structure
by using the neo-Hookean soft component. Nevertheless, all S-
wave modes in the band structure can be expected to be identical
between the deformed configuration and the initial configuration
of the PC.

3. Numerical simulations

To validate the theoretical prediction in Section 2, we per-
form numerical simulations by using the software COMSOL Mul-
tiphysics. A two-step model [20] is adopted to calculate the small-
on-large wave motion. The first step is to calculate a static equi-
librium equation for the hyperelastic material and to deduce the
corresponding effective material parameter in the deformed con-
figuration. The second step is to determine the band structure of
the PC by using a weak-form PDE model.

We define a primitive cell in the deformed configuration in
order to implement the scheme proposed above, as shown in
Fig. 1(c). The initial thicknesses of each stiff layer and soft layer
are both set to be aA = aB = 0.01 m, while the height of the
primitive cell is taken as h = 0.02 m. In consistency with the
above theoretical model, external deformations are only applied
to the soft layers. The small deformation in the stiff layers derived
from stress continuity is neglected because of the large modulus
ratio between the stiff and the soft phases. Periodic boundary
conditions are imposed at the four boundaries of the primitive
cell. The left and right boundaries of the cell are set to be Bloch
periodicity, while the upper and lower boundaries are specified
to be continuity periodicity. The band structure on the segment
Γ –G of the reciprocal lattice vector space is calculated, as shown
in Fig. 1(d).

For example, aluminum and vulcanization rubber are used as
the stiff and the soft materials, respectively. Their mechanical
parameters are ρA = 2730 kg/m3, λA = 7.76 × 1010 Pa, µA =
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Fig. 2. Band structures (left panel) and transmission spectra (right panel) of the PCs with different soft components. (a) Initial configurationwithout external deformation in
the soft component, which is equivalent to a linear elasticmaterialwith initialmechanical parameters. The results obtained by using the (b) semi-linear, (c) neo-Hookean, and
(d) Gent hyperelastic models. In (b)–(d), the soft component is subjected to uniaxial stretch with strain λ = 0.3. In the band structures, the P- and S-modes are distinguished
by red and blue curves, respectively, the mixed modes are denoted by cyan curves, and the band-gaps are denoted by the shaded areas. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
2.87 × 1010 Pa; ρB = 1300 kg/m3, λB = 1 × 106 Pa, and
µB = 3.4×105 Pa. As aforementioned, the semi-linear constitutive
relation and the neo-Hookean constitutive relation can be assumed
to describe the soft material. For further comparison, we also use
the following Gent strain energy function for the soft component:

W = −
µ0

2
Jm log


1 −

I1 − 3
Jm


− µ0 log J

+


λ0

2
−

µ

Jm


(J − 1)2, (6)

where Jm is a dimensionless parameter related to the strain satura-
tion of the material. Here we choose Jm = 0.5 in accordance with
a previous Ref. [13].

Using the semi-linear, neo-Hookean, andGentmodels, the band
structures of the PC are determined, as shown in Fig. 2. First, we
calculate the band structure of the initial configuration in Fig. 1(a),
as shown in Fig. 2(a). The P- and S-wave modes are distinguished
by the red and blue lines, respectively. Three band-gaps can be
observed in the range of [0–2000] Hz, namely [732–808] Hz,
[914–1617] Hz, and [1691–1801] Hz, which are independent of the
adopted constitutive relations for the soft phase.

In the deformed configuration of the PC, we assume that the
soft material is subjected to uniaxial stretch with the elongation
strain ε = 30%. Comparing Fig. 2(a) and (b) shows that when the
semi-linear constitutive model is used, the band structure of the
deformed PC is exactly the same as that of its initial, undeformed
configuration. This conclusion is consistent with our theoretical
prediction.

If the soft material obeys the neo-Hookean model, the S-
modes (blue lines) of the deformed PC are retained, in consistency
with our theoretical prediction. However, the P-modes (red
lines) are altered due to the external deformation, as shown in
Fig. 2(c). In this sense, the second band-gap keeps unchanged with
deformation since its two boundaries are both dictated by the S-
modes. The first and the third band-gaps shift from [732–808] Hz
and [1691–1801] Hz to [701–808] Hz and [1691–1721] Hz,
respectively.

As can be seen from Fig. 2(d), the PC with a Gent component
exhibits a totally different band structure, and all band-gaps
shift to lower frequencies. Simultaneously, the bandwidths also
manifest significant changes. The first band-gap is almost closed,
the second band-gap is narrowed by 42%, while the third band-gap
is magnified by 56%.

In order to testify the above results, the transmission spectra
are also simulated for these examples. In the numerical processes,
a super cellwith eight primitive cells in the x direction is simulated,
as shown in Fig. 1(d). Instead of Bloch periodical boundary
conditions, the left boundary of the super cell is set to be a
harmonic wave source, while the right boundary is set to be an
output terminal. The transmission coefficient, also referred to as
transmittance, is defined as T = 20 log10(uout/uin), with uin
and uout being the integrated displacements on the input and
the output terminals, respectively. It is seen from the numerical
results in Fig. 2 that the transmission spectra demonstrate a good
agreement with the band structures for both the pass bands and
band-gaps.

To further examine the influence of deformations on the band
structure of a PC with a semi-linear or neo-Hookean component,
we simulate the transformation of the band-gaps with increasing
uniaxial tension. For the PC with a semi-linear component, all
bands keep unchanged even when the applied uniaxial tension is
very large. For the neo-Hookean case, all S-modes are independent
of uniaxial tension, as demonstrated in Fig. 3. However, the first P-
wave mode shifts to a lower frequency, leading to an increase in
the first band-gap width for∼49%when ε = 40%; the width of the
third band-gap reduces with deformation and it is nearly closed at
ε = 40%.

Finally, we consider a more realistic situation by using the
transmission spectrum method. Assume that the soft component
in the PC is subjected to randomly mechanical deformation in
the range of ε ∈ [0%, 30%]. In the super cell defined in
Fig. 1(d), different uniaxial stretches are applied to the different
soft layers. Three random load distributions are compared, as
shown in Fig. 4(a). For the PC with a semi-linear component, the
transmission spectra in the three cases totally coincide with each
other and are the same as that in the undeformed configuration
of the PC. For the PCs with a neo-Hookean component, all
boundaries governed by the S-bands, including the higher-
frequency boundary of the first band-gap, the two boundaries of
the second band-gap, and the lower-frequency boundary of the
third band-gap, show no difference in the three loading conditions.
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Fig. 3. Variations in the elastic band-gaps of the PCwith respect to the tensile strain
applied to its neo-Hookean component. The band-gaps are denoted by the shaded
areas, and the band-gap boundaries governed by P- and S-modes are distinguished
by red and blue color, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

The remaining two band-gap boundaries, though dependent of the
loads, vary in a very narrow range of frequency. The shaded areas
in Fig. 4(b) demonstrates the band-gaps calculated by averaging
the global deformation of the super cell. The good agreement
among the transmission spectra (curves) and the band-gap areas
(shaded area) demonstrates that the band-gaps of a PC with a neo-
Hookean component can be well predicted by averaging its overall
deformation. Moreover, the results also illustrate that stable band-
gaps can also be expected in the circumstance with random loads.

4. Discussions

The above theoretical and numerical analyses show that semi-
linear materials exhibit distinct merits in the design of PCs with
stable band-gaps. However, fewmaterials in nature possess a semi-
linear soft constitutive relation of relatively large deformation,
and the spatial equivalence condition requires that the semi-linear
material in the PC undergoes only rotation-free deformations in
order to guarantee the stability of its band-gaps [18]. These issues
make it very tough to practically realize PCs with stable band-gaps
by using semi-linear materials.

In contrary, neo-Hookean materials widely exist in nature.
Although a PC made of a neo-Hookean material only has
stable S-wave modes, its spatial equivalence is independent of
deformations [20]. Our analysis demonstrates that though its third
band-gap may be closed under large deformations, the width
of the first band-gap can be enlarged by external deformation
(Fig. 3). In addition, the PCs made of a neo-Hookean material
can exhibit a robustness of performance even when subjected
to random mechanical loads (Fig. 4). Therefore, neo-Hookean
materials should be a potential candidate to realize PC deviceswith
stable band structures.

5. Conclusions

We have integrated the hyperelastic transformation theory in
the design of PCs with stable band structures that do not vary
with external deformations. It is demonstrated, both theoretically
Fig. 4. Transmission spectra of a PC with a neo-Hookean soft component subjected to randomly distributed deformations. (a) Three different distributions of random
tensile strains applied to the different layers of the soft component, and (b) the corresponding transmission spectra. The shaded areas denote the band-gaps obtained from
the simulations of the super cell.
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and numerically, that the band structure of a 1D PC made of
a semi-linear material will keep unchanged with deformation.
For a PC made of a neo-Hookean medium, deformations do not
affect its S-modes but have significant effects on the P- modes.
The analysis of the band-gap transformation shows that neo-
Hookean materials can be utilized to realize PCs with stable band-
gaps. The proposed PCs may can be applied in some fields where
high precision transmission and measurement are required. This
work also provide inspirations for the design of elastodynamic
cloaks [18,19], elastic wave mode splitters [20], shear wave beam
bands [25], and impact-tolerant composites.
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