头像

孟庆锋

农学院

专业技术职务: 教授

行政职务:

主要研究方向: 作物高产高效栽培理论与技术

学位: 博士

联系电话:

电子邮箱: mengqf@cau.edu.cn

个人资料

  • 部门: 农学院
  • 性别:
  • 民族: 汉族
  • 专业技术职务: 教授
  • 行政职务:
  • 主要研究方向: 作物高产高效栽培理论与技术
  • 毕业院校:
  • 学位: 博士
  • 联系电话:
  • 电子邮箱: mengqf@cau.edu.cn
  • 办公地址:
  • 通讯地址:
  • 邮编: 100193
  • 传真:

专家类别

  • 学术学位导师类型: 博导兼硕导
  • 专业学位研究生导师类型: 硕导
  • 从事学科1: 作物学
  • 从事学科2: 作物学
  • 从事专业1: 作物栽培学与耕作学
  • 从事专业2: 作物生理学
  • 研究方向1: 高产高效作物栽培理论与技术
  • 研究方向2: 应对气候变化(高温和干旱逆境)的作物栽培调控技术
  • 从事专业学位领域名称: 农艺与种业

个人简介

个人简介:

        国家级人才计划青年学者,中国农业大学“人才培育发展支持计划”绿色农业生产方向-青年科学家创新团队负责人,博士生导师,近年连续入选Elesvier全球前2%科学家榜单美国农学会《Crop Science》Associated editor、《中国农业科学》、《Farming System》等期刊编委。致力于高产高效作物栽培理论和技术教学科研工作,获中国农业大学博士学位。攻读博士学位期间(2008-2012),参加中德IRTG博士生联合培养项目,多次赴德国Hohenheim大学学习。博士后期间,赴美国Stanford大学开展合作研究。

       近年来,在Nature Communications、Nature Food、Field Crops Research等国际知名期刊发表论文60多篇,应邀为作物栽培领域著名综述期刊Advances in Agronomy等撰写综述文章多篇。

       文章主页:https://www.scopus.com/authid/detail.uri?authorId=25638850300


研究方向:

作物高产高效栽培理论与技术



教授课程:

本科生课程:《作物栽培学》、《植物田间技术》、《农作物概论》

研究生课程:《作物栽培生理与耕作学研究进展》,《现代植物生产理论与技术》


发表论文(部分论文,*为通讯作者):

1. Luo, N., Meng, Q.F*., Feng, P.Y., Qu, Z.R., Yu, Y.H., Liu, D.L., Muller, C. Wang, P., 2023. China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications, 14, 2637.

2. Meng, Q.F*., 2024. Adaptive solutions for potassium limitation. Nature Food, 

https://doi.org/10.1038/s43016-024-01069-9.

3. Zhu, Y.P., Wang, J.H., Zhu, Y.J., Lai, H., Qu, Z.R., Zhao, J., Wei, D., Wang, P., Meng, Q.F*., 2024.  Unlocking maize yield potential through exploring canopy-root interactions with nature-based nutrient management. Field Crops Research, 318, 109618.

4. Qu, Z.R., Luo, N., Guo, J.M., Xu, J., Wang, P., Meng, Q.F*., 2024. Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization. Renewable and Sustainable Energy Reviews, 199, 114471.

5. Wang, X.L., Wang, J.H., Zhu, Y.P., Qu, Z.R., Liu, X.W., Wang, P., Meng, Q.F*., 2024. Improving resilience to high temperature in drought: water replenishment enhances sucrose and amino acid metabolisms in maize grain. The Plant Journal, 119, 658–675.

6. Wei, D., Tian, B.J., Wu, Q.Z., Wang, H.J., Wang, P., Meng, Q.F*., 2024. Water stress combining weather condition shapes wheat yield and inter-annual yield variability: Field observations from a six-year study. European Journal of Agronomy, 159, 127291.

7. Liu, X.W., Chang, X.H., Wang, Y.J., Wang, D.M., Wang, X.L., Meng, Q.F*., Wang, P., 2024. Adaptation to priming drought at six-leaf stage relieves maize yield loss to individual and combined drought and heat stressors around flowering. Environmental and Experimental Botany, 224, 105799.

8. Zhu, Y.P., Qu, Z.R., Zhao, J., Wang, J.H., Wei, D., Meng, Q.F*., 2024. Can high-yielding maize system decrease greenhouse gas emissions largely while simultaneously enhancing economic and ecosystem benefits through the “Rhizobiont” concept? Evidence from field. Science of the Total Environment, 914, 169889.

9. Wang, X.L., Luo, N., Zhu, Y.P., Yan, Y., Wang, H.J., Xie, H.J., Wang, P., Meng, Q.F*., 2023. Water replenishment to maize under heat stress improves canopy temperature and grain filling traits during the reproductive stage. Agricultural and Forest Meteorology, 340, 109627.

10. Luo, N., Meuller, N., Zhang, Y., Feng, P.Y., Huang, S.B., Liu, D.L., Yu, Y.H., Wang, X.Y., Wang, P., Meng, Q.F*., 2023. Short-term extreme heat at flowering amplifies the impacts of climate change on maize production. Environmental Research Letters, 18, 084021.

11. Zhu, Y.P., Wang, S., Li, Y.H., Wei, D., Luo, N., Wang, P., Meng, Q.F*., 2023. Enhancing maize yield through understanding the novel shoot-root interaction in morphology among hybrids with dense planting. Field Crops Research, 302, 109107.

12. Wei, D., Luo, N., Zhu, Y.P., Wang, P., Meng, Q.F*., 2023. Diverse water management in a preceding wheat crop does not affect maize yield but increases inter-annual variability: A six-year field study. Field Crops Research, 302, 109039.

13. Wei, D., Wang, X.L., Luo, N., Zhu, Y.P., Wang, P., Meng, Q.F*., 2023. Alleviating groundwater depletion while realizing food security for sustainable development. Journal of Cleaner Production, 393, 136351.

14. Wang, X.L., Zhu, Y.P., Yan, Y., Hou, J.M., Wang, H.J., Luo, N., Wei, D., Meng, Q.F*., Wang, P., 2023. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize. Journal of Integrative Agriculture, 22, 2–15.

15. Liu, X.W., Yu, Y.H., Huang, S.B., Xu, C.C., Wang, X.Y., Gao, J., Meng, Q.F*., Wang, P., 2022. The impact of drought and heat stress at flowering on maize kernel filling: Insights from the field and laboratory. Agricultural and Forest Meteorology, 312, 108733.

16. Wang, X.Y., Tan, W.M., Zhou, S.L., Xu, Y., Cui, T., Gao, H., Chen, M.L., Dong, X.H., Sun, H.Y., Yang, J.Z., Wu, Y.C., Kong, F.L., Zhan, M., Pan, J.B., Wang, Y., Wang, X.Y., Luo, N., Huang, S.B., Mi, G.H., Zhang, D.X., Yuan, J.C, Chen, X.P., Meng, Q.F*., Wang, P., 2021. Converting maize production with low emergy cost and high economic return for sustainable development. Renewable and Sustainable Energy Reviews, 136, 110443.

17. Wang, X.L., Yan, Y., Xu, C.C., Wang, X.Y., Luo, N., Wei, D., Meng, Q.F*., Wang, P., 2021. Mitigating heat impacts in maize (Zea mays L.) during the reproductive stage through biochar soil amendment. Agriculture, Ecosystem and Environment, 311, 107321.

18. Liu, X.W., Wang, X.L., Wang, X.Y., Gao, J., Luo, N., Meng, Q. F*., Wang, P., 2020. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering. Environmental and Experimental Botany, 179, 104213.

19. Luo, N., Wang, X.Y., Wang, Y.Y., Wang, Y.Y., Wang, P., Meng, Q.F*., 2020. Agronomic optimal plant density for yield improvement in the major maize regions of China. Crop Science, 60, 1580–1590.

20. Tian, B.J., Zhu, J.C., Nie, Y.S., Xu, C.L., Meng, Q.F*., Wang, P*., 2019. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. Journal of Agronomy and Crop Science, 205, 77–87.

21. Wang, X.Y., Liu, X.W., Wu, Q.Z., Wang, P., Meng, Q.F*., 2019. The suitability of the emerging double maize system towards sustainable water use under a warm temperature continental monsoon climate. Agronomy Journal, 111, 1–12.

22. Wang, X.Y., Wang, X.L., Xu. C.C., Tan, W.M., Wang, P., Meng, Q.F*., 2019. Decreased kernel moisture in medium-maturing maize hybrids with high yield for mechanized grain harvest. Crop Science, 59: 1–12.

23. Meng, Q.F., Cui, Z.L., Yang, H.S., Zhang, F.S., Chen, X.P*., 2018. Establishing high-yielding maize system for sustainable intensification in China. Advances in Agronomy, 148, 85–105.

24. Liu, B.H., Chen, X.P*., Meng, Q.F*., Yang, H.S., van Wart, Justin., 2017. Estimating maize yield potential and yield gap with agro-climatic zones in China—Distinguish irrigated and rainfed conditions. Agricultural and Forest Meteorology, 239, 108–117.

25. Liu, B.H., Wu, L., Chen, X.P., Meng, Q.F*., 2016. Quantifying the potential yield and yield gap of Chinese wheat production. Agronomy Journal, 108, 1–7.

26. Meng, Q.F., Hou, P., Lobell, D.B., Wang, H.F., Cui, Z.L., Zhang, F.S., Chen, X.P*., 2014. The benefits of recent warming for maize production in high latitude China. Climatic Change, 122, 341–349.

27. Meng, Q.F., Hou, P., Wu, L., Chen, X.P*., Cui, Z.L., Zhang, F.S. 2013. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research 143, 91–97.

28. Meng, Q.F., Sun, Q.P., Chen, X.P., Cui, Z.L*., Yue, S.C., Zhang, F.S., Römheld, V., 2012. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agriculture, Ecosystems and Environment, 146, 93–102.

 

















教学科研概况

社会职务

活动动态

研究领域

1)基于AI的作物高产群体智能构建与田间实现;

2)应对气候变化(高温和干旱逆境)的作物栽培调控技术;

3)高产作物体系肥水高效利用调控技术;

4)绿色可持续集约化作物生产体系集成与应用。


开授课程

本科生课程:近十年课程数据
  • 1、植物田间技术(上),2024-2025,第二学期,星期四,西校区
  • 2、农作物概论,2024-2025,第二学期,星期二星期四,西校区
  • 3、作物栽培学A,2024-2025,第二学期,星期二星期四,西校区
  • 4、植物田间技术(下),2024-2025,第一学期,星期一,西校区
  • 5、植物田间技术(上),2023-2024,第二学期,星期四,西校区
  • 6、农作物概论,2023-2024,第二学期,星期二星期四,西校区
  • 7、作物栽培学A,2023-2024,第二学期,星期二星期四,西校区
  • 8、植物田间技术(下),2023-2024,第一学期,星期一,西校区
  • 9、植物田间技术(上),2022-2023,第二学期,星期四,西校区
  • 10、农作物概论,2022-2023,第二学期,星期二星期四,西校区
  • 11、作物栽培学A,2022-2023,第二学期,星期二星期四,西校区
  • 12、植物田间技术(下),2022-2023,第一学期,星期一,西校区
  • 13、植物田间技术(上),2021-2022,第二学期,星期四,西校区
  • 14、农作物概论,2021-2022,第二学期,星期二星期四,西校区
  • 15、作物栽培学A,2021-2022,第二学期,星期二星期四,西校区
  • 16、植物田间技术(下),2021-2022,第一学期,星期一,西校区
  • 17、植物田间技术(上),2020-2021,第二学期,星期五,西校区
  • 18、农作物概论,2020-2021,第二学期,星期二星期四,西校区
  • 19、作物栽培学A,2020-2021,第二学期,星期二星期四,西校区
  • 20、植物田间技术(下),2020-2021,第一学期,星期一,西校区
  • 21、植物田间技术(上),2019-2020,第二学期,星期四,西校区
  • 22、农作物概论,2019-2020,第二学期,星期二星期四,西校区
  • 23、作物栽培学A,2019-2020,第二学期,星期二星期四,西校区
  • 24、植物田间技术(下),2019-2020,第一学期,星期二,西校区
  • 25、植物田间技术(上),2018-2019,第二学期,星期四,西校区
  • 26、农作物概论,2018-2019,第二学期,星期二星期四,西校区
  • 27、作物栽培学A,2018-2019,第二学期,星期二星期四,西校区
  • 28、植物田间技术(下),2018-2019,第一学期,星期二,西校区
  • 29、作物栽培学A,2017-2018,第二学期,星期二星期四,西校区
  • 30、植物田间技术(上),2017-2018,第二学期,星期三,西校区
  • 31、农作物概论,2017-2018,第一学期,星期二星期四,西校区
  • 32、田间技术实验(下),2017-2018,第一学期,星期四,西校区
  • 33、作物栽培学A,2016-2017,第二学期,星期二星期四,西校区
  • 34、田间技术实验(上),2016-2017,第二学期,星期三,西校区
  • 35、农作物概论,2016-2017,第一学期,星期二星期四,西校区

研究生课程:近十年课程数据
  • 1、现代植物生产理论与技术,2024-2025,第一学期,星期一
  • 2、作物栽培生理与耕作学研究进展,2024-2025,第一学期,星期二
  • 3、作物栽培生理与耕作学研究进展,2023-2024,第一学期,星期二
  • 4、作物生产与保护学,2018-2019,第一学期,星期二
  • 5、作物生产与保护学,2017-2018,第一学期,星期一

科研项目

纵向项目
  • 1、2024.09.02-2024.12.31,国家科技部项目,2024-现代农业产业技术体系-玉米-土壤管理与产地环境治理
  • 2、2024.01.03-2026.09.30,国家重点研发计划,基于NbS的养分管理共性关键技术和多学科框架体系
  • 3、2023.09.20-2023.12.31,国家部委其他科技项目,2023-现代农业产业技术体系-玉米-土壤管理与产地环境治理
  • 4、2023.06.01-2025.12.31,国家重点研发计划,河西走廊东部灌漠土区作物多样化配置有限水资源利用的种间作物机制及模型构建
  • 5、2023.04.20-2024.12.31,国家社科基金项目,我国农业基础研究的发展战略
  • 6、2022.09.13-2022.12.31,国家部委其他科技项目,2022-现代农业产业技术体系-玉米-土壤管理与产地环境治理

论文

科技成果

软件著作
专利

荣誉及奖励

招生信息

本课题组招收:

博士生、硕士生(学硕、专硕)

本科生:URP、大创、毕设

欢迎同学报考,详情联系mengqf@cau.edu.cn咨询


往期招生
报考意向

团队展示

10 访问

(0) (0)