个人资料
- 部门: 农学院
- 性别: 男
- 民族: 土家族
- 专业技术职务: 教授
- 行政职务:
- 毕业院校:
- 学位: 博士
- 联系电话:
- 电子邮箱:
- 办公地址:
- 通讯地址:
- 邮编:
- 传真:
专家类别
- 学术学位导师类型: 博导兼硕导
- 专业学位研究生导师类型: 硕导
- 从事学科1: 作物学
- 从事学科2:
- 从事专业1: 作物遗传育种
- 从事专业2:
- 研究方向1: 玉米功能基因组学
- 研究方向2: 玉米野生种优异等位基因的发掘与利用
- 从事专业学位领域名称: 农艺与种业
个人简介
田丰,中国农业大学教授,博士生导师,国家玉米改良中心副主任。2007年于中国农业大学获得博士学位,2007 - 2011年在康奈尔大学从事博士后研究,2011年中国农业大学以拔尖人才引进。2012年入选国家青年人才计划;2013年获国家优秀青年科学基金资助;2020年获国家杰出青年科学基金资助;2021年荣获中国植物生理与植物分子生物学学会“杰出青年科学家奖”;2024年荣获“科学探索奖”。主要从事玉米耐密高产性状遗传基础解析及分子设计育种研究。在Nature、Science、Nature Genetics、PNAS、Current Biology、Molecular Plant、Plant Cell等期刊发表论文40余篇,相关研究成果入选“2020年中国农业科学十大进展”。担任国际玉米遗传学大会亚洲代表、中国作物学会理事,任Journal of Integrative Plant Biology、New Crops、Molecular Breeding、作物学报、中国农业科学等期刊编委。
代表性论文(#共同第一;*通讯或共同通讯) Tian J, W C, Chen F, Qin W, Yang H, Zhao S, Xia J, Du X, Zhu Y, Wu L, Cao Y, Li H, Zhuang J, Chen S, Zhang H, Chen Q, Zhang M, D XW, D D, Li J* and Tian F* (2024) Maize smart-canopy architecture enhances yield at high densities. Nature, 632:576-584 Wu L, Liang Y, Guo L, Zhu Y, Qin W, Wu W, Jia H, Tian F* (2023) A single nucleotide polymorphism in conz1 enhances maize adaptation to higher latitudes. Plant Biotechnology Journal, 21(11):2163-2165 Liang Y and Tian F* (2023) Plant genetics: Mechanisms of wild soybean adaptation. Current Biology, 33(2):R82-R84 Liang Y, Liu H, Yan J* and Tian F* (2021) Natural variation in crops: realized understanding, continuing promise. Annual Review of Plant Biology, 72:357–385 Chen Q and Tian F* (2021) Towards knowledge-driven breeding. Nature Plants, 7(3):242-243 Chen Q, Li W, Tan L* and Tian F* (2021) Harnessing knowledge from maize and rice domestication for new crop breeding. Molecular Plant 14: 9–26. Sun H, Wang C, Chen X, Liu H, Huang Y, Li S, Dong Z, Zhao X, Tian F* and Jin W* (2020) dlf1 promotes floral transition by directly activating ZmMADS4 and ZmMADS67 in the maize shoot apex. New Phytologist, 228:1386-1400 Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W and Tian F*(2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365(6454):658-664 Fu Y, Xu G, Chen H, Wang X, Chen Q, Huang C, Li D, Xu D, Tian J, Wu W, Lu S, Li C* and Tian F* (2019) QTL mapping for leaf morphology traits in a large maize-teosinte population. Molecular Breeding, 39(7): 103 Xu G, Cao J, Wang X, Chen Q, Jin W, Li Z* and Tian F*(2019) Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte. The Plant Cell,31(9):1990-2009 Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, Lin HY, Li C, Xu D, Wu L, Wang C, Wu W, Xia J, Han X, Lai J, Song W*, Schnable PS* and Tian F* (2019) ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytologist, 221: 2335–2347 Guo L, Wang X, Zhao M, Huang C, Li C, Li D, Yang CJ, York AM, Xue W, Xu G, Liang Y, Chen Q, Doebley JF and Tian F* (2018) Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering time adaptation. Current Biology,28: 3005–3015 Chen Q, Han Y, Liu H, Wang X, Sun J, Zhao B, Li W, Tian J, Liang Y, Yan J, Yang X* and Tian F* (2018) Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize. The Plant Cell, 30(7): 1404-1423 Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D, Wu L, Yang X, Jin W, Doebley JF* and Tian F* (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA,115:E334-E341 Wang X, Chen Q, Wu Y, Lemmon ZH, Xu G, Huang C, Liang Y, Xu D, Li D, Doebley JF and Tian F* (2018)Genome-wide analysis of transcriptional variability in a large maize-teosinte population. Molecular Plant. 11:443–459. Xu D, Wang X, Huang C, Xu G, Liang Y, Chen Q, Wang C, Li D, Tian J, Wu L, Wu Y, Guo L, Wang X, Wu W, Zhang W, Yang X and Tian F* (2017) Glossy15 plays an important role in the divergence of the vegetative transition between maize and its progenitor, teosinte. Molecular Plant. 10(12):1579-1583. Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X and Tian F* (2017) Complex genetic architecture underlies maize tassel domestication. New Phytologist, 214: 852–864 Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, Wang C, Liang Y, Wu L, Huang C, Tian J, Wu Y and Tian F* (2016) The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytologist, 210:256-268 Huang C, Chen Q, Xu G, Xu D, Tian J and Tian F* (2015) Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. Journal of Integrative Plant Biology, 58:81-90. Chen Q, Liu Z, Wang B, Wang X, Lai J and Tian F* (2015) Transcriptome sequencing reveals the roles of transcription factors in modulating genotype by nitrogen interaction in maize. Plant Cell Reports, 34(10):1761-1771. Wang Q, Tian F*, Pan Y*, Buckler ES and Zhang Z* (2014) A SUPER powerful method for genome wide association study. PLoS ONE , 9:e107684. Hung HY#, Shannon LM#, Tian F#, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF and Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the post-domestication spread of maize. Proc Natl Acad Sci USA 109: E1913-1921. Tian F#, Bradbury PJ#, Brown PJ, Hsiaoyi H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB and Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population.Nature Genetics 43:159-162. Tian F, Stevens NM and Buckler ES (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci USA 106: 9979-9986 Tian F#, Zhu Z#, Zhang B, Tan L, Fu Y, Wang X and Sun C (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.) Theoretical and Applied Genetics 113: 619-629. Tian F, Li D, Fu Q, Zhu Z, Fu Y, Wang X and Sun C (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theoretical and Applied Genetics 112:570-580
开授课程
本科生课程:近十年课程数据
-
1、试验设计与生物统计实验,2024-2025,第一学期,星期二,西校区
-
2、试验设计与生物统计实验,2023-2024,第一学期,星期二,西校区
-
3、试验设计与生物统计实验,2022-2023,第一学期,星期二,西校区
-
4、试验设计与生物统计实验,2021-2022,第一学期,星期二,西校区
-
5、试验设计与生物统计实验,2020-2021,第一学期,星期二,西校区
-
6、试验设计与生物统计实验,2019-2020,第一学期,星期二,西校区
-
7、试验设计与生物统计实验,2018-2019,第一学期,星期二,西校区
-
8、试验设计与生物统计实验,2017-2018,第一学期,星期二,西校区
-
9、试验设计与生物统计实验,2016-2017,第一学期,星期二,西校区
-
10、试验设计与生物统计实验,2015-2016,第一学期,星期一,西校区
-
11、试验设计与生物统计实验,2014-2015,第一学期,星期五,西校区
-
12、试验设计与生物统计实验,2013-2014,第一学期,星期二星期四星期五,西校区
-
13、试验设计与生物统计实验,2012-2013,第一学期,星期二星期四星期五,西校区
研究生课程:近十年课程数据
-
1、作物遗传育种统计方法,2024-2025,第一学期,星期二
-
2、作物遗传育种统计方法,2023-2024,第一学期,星期二
-
3、作物遗传育种统计方法,2022-2023,第一学期,星期二
-
4、作物遗传育种统计方法,2021-2022,第一学期,星期三
-
5、作物遗传育种统计方法,2020-2021,第一学期,星期三
-
6、作物遗传育种统计方法,2019-2020,第一学期,星期三
-
7、作物遗传育种统计方法,2018-2019,第一学期,星期三
-
8、作物遗传育种统计方法,2017-2018,第一学期,星期三
-
9、作物遗传育种统计方法,2016-2017,第一学期,星期三
-
10、作物遗传育种统计方法,2015-2016,第一学期
-
11、作物遗传育种统计方法,2014-2015,第一学期
-
12、作物遗传育种统计方法,2013-2014,第一学期
科研项目
纵向项目
-
1、2024.01.02-2024.12.31,国家重点研发计划,西**应用2024
-
2、2023.10.13-2028.12.31,国家自然科学基金项目,解析玉米“上紧下松”耐密株型建成的遗传基础
-
3、2023.03.22-2027.11.30,国家重点研发计划,复杂性状全基因组选择新方法开发
-
4、2020.12.25-2025.12.31,国家自然科学基金项目,玉米驯化与适应的分子遗传基础
-
5、2019.11.11-2021.12.31,国家自然科学基金项目,玉米产量与品质关键性状遗传网络研究
-
6、2016.11.04-2020.12.31,国家重点研发计划,作物密植高产性状形成的分子基础
科技成果
软件著作
专利
-
1、玉米开花期基因ZCN8的两个特异性分子标记及其应用,2018,201810749344.0
-
2、玉米分子标记及其在检测玉米开花期相关性状中的应用,2017,201711069055.8
-
3、ZmCCT9在调控玉米开花期性状中的应用,2017,201711068897.1
招生信息
往期招生
- 1
- 2
- 2024
- 2
- 2
- 2023
- 3
- 2
- 2022
- 4
- 3
- 2021
- 1
- 1
- 2024
- 2
- 3
- 2023
- 3
- 1
- 2022
- 4
- 4
- 2021
报考意向
|