头像

Li Long

College of Resources and Environmental Sciences

About

  • Department: College of Resources and Environmental Sciences
  • Gender: male
  • Nationality:
  • Post: Professor
  • Duties:
  • Graduate School:
  • Degree: PhD
  • Tel:
  • Email: lilong@cau.edu.cn
  • Office Location: : Zihuan Building 2-309
  • Address: : 2 Yuan Ming Yuan Xilu, Haidian District, Beijing
  • PostCode: 100193
  • Fax:

Expert category

  • Academic degree supervisor type:
  • Professional Degree Graduate Supervisor Type:
  • Engaged in disciplines1:
  • Engaged in disciplines2:
  • Engaging in a profession1:
  • Engaging in a profession2:
  • Research direction 2:
  • Research direction 1:
  • Name of professional degree field:

Education

EDUCATION

1996   to 1999

Ph.D. Department of Plant Nutrition,   China Agricultural University, Beijing, China.

Dissertation:   Interspecific facilitative and competitive interactions between intercropped   species


1980   to 1984

BSc.   Department of Soil Science and Agricultural Chemistry, Northwest Agricultural   University, P. R. China.

Thesis:   Absorption and desorption of different forms of boron ions in soils


WorkExperience


WORK EXPERIENCE

July 2013 – Present, Deputy Director, Beijing Key Laboratory of Biodiversity and Organic Farming. China Agricultural University.

December 2002-Present Professor, College of Resources and Environmental Sciences, China Agricultural University, Beijing. Leader of Research Group for Biodiversity and Resource Utilization.

July 2001-November 2002 Associate Professor, College of Resources and Environmental Sciences, China Agricultural University, Beijing

September 1999-June 2001 Postdoctoral Research Fellow, Soil Science and Plant Nutrition, University of Western Australia, Australia; and Research Centre for Eco-Environment Sciences, Chinese Academy of Sciences.

January 1992-June 1999 Assistant Research Fellow and Senior Research Fellow, Institute of Soils and Fertilizers, Gansu Academy of Agricultural Sciences (GAAS), Lanzhou, China..

July 1984-December 1991 Junior Research Fellow, Institute of Soil and Fertilizer, GAAS, Lanzhou, China.

VISITING STUDIES OVERSEAS

July 2014 to January 2015, CSC fellowship, Visiting Professor, invited by Regents Professor Ray Callaway, University of Montana, USA,

December 2009 to March 2010, WUR award, Visiting Scientist, invited by A/professor, Wopke van der Werf, Wageningen University, The Netherlands

July 2008 to November 2008, Endeavour Executive Award,Visiting Scientist, invited by Professor Hans Lambers, The University of Western Australia, Australia

June 2006 to December 2006, CSC fellowship, Visiting Scientist, invited by Professor David Tilman, The University of Minnesota, USA

November 2004 to January 2005, DAAD Fellowship, Visiting Scientist, invited by Professor, Hartmut Stützel, Hannover University, Germany

March 2004 to May 2004, Visiting Scientist, invited by Professors Sally Smith and Andrew Smith, The University of Adelaide, Australia

March 2000 to November 2000, AusAID Scholarship, Post-doctorial Fellow, hosted by Professor Zed Rengel, The University of Western Australia, Australia.


Resume

Teaching research

Undergraduate Students: Introduction to Biodiversity Science

Graduated Students: Biodiversity Science and Application

Social Position

Editorial Board Member of Plant and Soil (2019-present)

Editorial Board Member of Ecosphere (2020-present)


Editorial Board Member of Journal of Plant Physiology (2011-2015)


Consultant in FAO for agroecology in China (2017)

Associate Editor-in-Chief of Frontiers of Agricultural Science and Engineering (FASE) (2019-2021)

Committee of Agroecology in Chinese Society of Ecology (2006-present)


Dynamic activity

Field

Open Course

Project

RESEARCH PROJECTS

National Natural Science Foundation of China (NSFC): Mechanism underlying crop diversity maintains multifunctionality of agroecosystems (Project No: 30210067, 2022-2026)

The National Key Research and Development Program of China: Crop diversification research and application toward enhanced productivity and soil fertility in Northwest China (2022YFD1900200, 2022-2025)

The National Key Research and Development Program of China: The mechanisms underlying efficient resource utilization based on physiological and ecological processes in intercropping systems (Project No: 2016YFD0300202, 2016-2020).

National Natural Science Foundation of China (NSFC): Mechanisms underlying crop species diversity maintains the temporal stability of productivity for agroecosystems (Project No. 31430014, 2015-2019)

National Natural Science Foundation of China (NSFC): Crop root growth, spatial distribution and morphological changes in intercropping system (Project No: 31270477, 2013-2016)

National Key Technology R&D Program of China: The key technology research and demonstration of appropriate input of nitrogen and phosphorus fertilizer in interspecific combinations of intercropping (Project No: 2012BAD14B04-2, 2012-2016)

The Major State Basic Research Development Program of the People’s Republic of China: Crop diversity cultivation towards to controlling crop disease and pest and to improving of soil fertility (Project No. 2011CB100405, 2011-2015)

National Key Technology R&D Program of China: Precision management of water and nutrients and soil fertility for multiple cropping systems (Project No: 2009BADA4B03, 2009-2013)

The Specialized Research Fund for the Doctoral Program of Higher Education: The relation between interspecific competitiveness and crop root physiological and morphological characteristics in intercropping system. (Project No: 200800190034, 2009-2012)

MOA project: Management practices for agroforestry with fruit tree and cotton or crops in Southern Xinjiang (Project No: 201003043, 2010-2014)

Key Project of National Natural Science Foundation of China: Rhizosphere processes targeted on efficient P utilization (Project No: 30890133, 2009-2012)

National Key Technology R&D Program of China: Integrated technology targeted on promoting nutrient cycling and reducing fertilizer uses in agroecosystems (Project No: 2007BAD89B02, 2008-2010)

National Natural Science Foundation of China: Mechanisms behind positive relationship between plant diversity and ecosystem productivity via interspecific rhizosphere effect (Project No: 30870406, 2009-2011)

National Natural Science Foundation of China: Mechanisms on enhanced nodulation and biological nitrogen fixation by root interactions in intercropping (Project No: 30670381, 2007-2009)

The Major State Basic Research Development Program of the People’s Republic of China: Technical model in agro-biodiversity utilization for pest management and germplasm conservation (Project no 2006CB100206, 2006 – 2010).

The Specialized Research Fund for the Doctoral Program of Higher Education: Method selection for measuring biological nitrogen fixation of legumes in intercropping systems (Project no: 20040019035, 2005-2007).

Sino-Germany Project Influence of production systems on the contents and composition of bioactive substances on selected Chinese Brassica species (2003 – 2005).

The Major State Basic Research Development Program of the People’s Republic of China: Mechanism of high-efficient use of nutrients by intercropping (Project no G1999011707, 1999 – 2004).

National Natural Science Foundation of China: Mechanism of Nitrogen Nutrition Interactions between Intercropped Species (2001 – 2003).

National Postdoctoral Foundation of China: Nitrate Distribution in Soil Profile in Intercropping Systems (2000 – 2001).

National Natural Science Foundation of China: Interspecific Facilitation of Phosphorus Uptake by Intercropped Species (1997 – 1999).


Thesis

发表的主要论文(标*为通讯作者):

1.        Zhang WP, a FornarD, Yang H, Yu RP, Callaway R, Li L* (2023)Plant litter strengthens positive biodiversity–ecosystem functioning relationships over time. Trends in Ecology & Evolution doi: 10.1016/j.tree.2022.12.008.

2.        Zhang WP, Li ZX, Gao SN, Yang H, Xu HS, Yang X, Fan HX, Su Y, Surigaoge S, Weiner J, Fornara D, Li L* (2023) Resistance vs. surrender: Different responses of functional traits of soybean and peanut to intercropping with maize. Field Crops Research doi: 10.1016/j.fcr.2022.108779

3.        Zhao JH, Bedoussac L, Sun JH, Chen W, Li WQ, Bao XG, van der Werf W, Li L* (2023) Competition-recovery and overyielding of maize in intercropping depend on species temporal complementarity and nitrogen supply. Field Crops Researchdoi: 10.1016/j.fcr.2023.108820

4.        Yang H, Xu HS, Zhang WP, Li ZX, Fan HX, Lambers H, Li L* (2022) Overyielding is accounted for partly by plasticity and dissimilarity of crop root traits in maize/legume intercropping systems. Functional Ecology doi: 10.1111/1365-2435.14115

5.        Wu JP, Bao XG, Zhang JD, Lu BL, Zhang WP, Callaway RM, Li L* (2022)Temporal stability of productivity is associated with complementarity and competitive intensities in intercropping. Ecological Applications doi: 10.1002/eap.2731

6.        Yu RP, Yang H, Xing Y, Lambers H, Li L* (2022) Belowground processes and sustainability in agroecosystems with intercropping. Plant and Soil doi: 10.1007/s11104-022-05487-1

7.        Li XF, Wang ZG, Bao XG, Sun JH, Yang SC, Wang P, Wang CB, Wu JP, Liu XR, Tian XL, Wang Y, Li JP, Wang Y, Xia HY, Mei PP, Wang XF, Zhao JH, Yu RP, Che ZX, Gui LG, Callaway RM, Tilman D, Li L* (2021) Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability 4, 943 - 950

8.        Yu R, Lambers H, Callaway R, Wright A, Li L* (2021) Belowground facilitation and trait matching: two or three to tango?       Trends in Plant Science 26 (12):1227-1235.

9.        Yu R. Zhang WP, Fornara D, Li L.* 2021 Contrasting responses of nitrogen: Phosphorus stoichiometry in plants and soils under grazing: A global meta- analysis. Journal of Applied Ecology 2021, 58:964975.

10.    Zhang W, Gao SN, Li ZX, Xu HS, Yang H., Yang X., Fan HX, Su Y, Fornara D, Li L*       Shifts from complementarity to selection effects maintain high productivity in maize/legume intercropping systems. Journal of Applied Ecology 2021, 58:26032613.

11.    Mei P, Wang P, Yang H, Gui L, Christie P, Li L.*    Maize/faba bean intercropping with rhizobial inoculation in a reclaimed desert soil enhances productivity and symbiotic N2 fixation and reduces apparent N losses. Soil & Tillage Research 2021, 105145.

12.    5. Yang H, Zhang W, Li L*. Intercropping: feed more people and build more sustainable agroecosystems. Frontiers of Agricultural Science and Engineering 2021, 8(3): 373‒386

13.    Yu RP, Zhang WP, Dario A. F., Li L* 2020 Contrasting responses of nitrogen: phosphorus stoichiometry in plants and soils under grazing: a global meta-analysis. Journal of Applied Ecology doi: 10.1111/1365-2664.13808

14.    Yu RP, Li XX, Xiao ZH, Lambers H, Li L.* (2020) Phosphorus facilitation and covariation of root traits in steppe species. New Phytologist 226:1285-1298.

15.    Callaway R.M.*, Li L.* (2020) Decisions, decisions, decisions: Plant roots detect and respond to complex environmental cues. New Phytologist 226: 11-12.

16.    Yu RP, Zhang WP, Yu YC, Yu SB, Lambers H, Li L.* (2020) Linking shifts in species composition induced by grazing with root traits for phosphorus acquisition in a typical steppe in Inner Mongolia. Science of the Total Environment 712: 136495.

17.    Liu YX, Sun JH, Zhang FF, Li L.* (2020) The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant and Soil 447: 39-53.

18.    Stomph T.J, Dordas C, Baranger A, Rijk J.D, Dong B, Evers J, Gu CF, Li L, Simon J, Jensen E.S, Wang Q, Wang YY, Wang ZS, Xu HS, Zhang CC, Zhang LZ, Zhang WP, Bedoussac L, Van der Werf W. (2020) Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles? Advances in Agronomy 160(1): 1-50.

19.    Zou XJ, Sun ZX, Yang N, Zhang LZ, Sun WT, Niu SW, Li L. (2019). Interspecific root interactions enhance photosynthesis and biomass of intercropped millet and peanut plants. Crop & Pasture Science 70(3): 234-243.

20.    Tian XL, Wang CB, Bao XG, Wang P, Li XF, Yang SC, Ding GC, Christie P & Li L* (2019) Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping, Plant and Soil 436(1-2):173-192. 

21.    Li XF, Wang,CB, Zhang WP, Wang LH, Tian,XL, Yang,SC, Jiang,WL, van Ruijven J, Li L*2018The role of complementarity and selection effects in P acquisition of intercropping systems. Plant and Soil 422(1-2): 479-493. 

22.    Li B, Li YY, Wu HM, Zhang FF, Li C J, Li XX, Lambers H, Li L* (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 113 (23) 6496-6501.

23.    Zhang WP, Liu GC, Sun JH, Fornara D, Zhang LZ, Zhang FF, Li L* (2016) Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Functional Ecology. doi:10.1111/1365-2435.12732

24.    Qiu, M. J. & Li, L.* (2016) Perspectives for intercropping in modern agriculture. EC Agriculture.  ECO.01 (2016): 01-02.

25.    Xue, Y., Xia, H., Christie, P., Zhang, Z., Li, L., & Tang, C. (2016). Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Annals of Botany, 117 (3): 363-377. doi: 10.1093/aob/mcv182.

26.    Liu, Y.-X., W.-P. Zhang, J.-H. Sun, X.-F. Li, P. Christie & Li, L.* (2015) High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Plant and Soil, 1-13.

27.    Zhang, W.-P., G.-C. Liu, J.-H. Sun, L.-Z. Zhang, J. Weiner &Li, L.* (2015) Growth trajectories and interspecific competitive dynamics in wheat/maize and barley/maize intercropping. Plant and Soil, 1-12.

28.    Wang, Z.-G., Bao, X.-G., Li X.-F., Jin X., Zhao J.-H., Sun J.-H., Christie P. & Li, L.* (2015) Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant and Soil, 391, 265-282.

29.    Zhang W., Ahanbieke P., Wang B.J., Gan Y.W., Li L.H., Christie P., Li L* (2015). Temporal and spatial distribution of roots as affected by interspecific interactions in a young walnut/wheat alley cropping system in northwest China. Agroforestry Systems 89: 327-343.

30.    Brooker R.W., Bennett A.E., Cong W.F., Daniell T.J., George T.S., Hallett P.D., Hawes C., Iannetta P.P.M., Jones H.G., Karley A.J., Li L., McKenzie B.M., Pakeman R.J., Paterson E., Schob C., Shen J.B., Squire G., Watson C.A., Zhang C.C., Zhang F.S., Zhang J.L., White P.J., 2015. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist 206: 107-117.

31.    Cong WF, Hoffland E, Li L, Janssen BH, van der Werf W, (2015) Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant and Soil 391: 399-411.

32.    Cong WF, Hoffland E, Li L, Six J, Sun JH, Bao XG, Zhang FS, van der Werf W (2015) Intercropping enhances soil carbon and nitrogen. Global Change Biology 21: 1715-1726.

33.    Wang ZG, Jin X, Bao XG, Li XF, Zhao JH, Sun JH, Christie P, Li L* (2014) Intercropping Enhances Productivity and Maintains the Most Soil Fertility Properties Relative to Sole Cropping. PloS ONE, 9, e113984.

34.    Li L*, Tilman D, Lambers H and Zhang FS (2014) Plant Diversity and Overyielding: Insights from Belowground Facilitation of Intercropping in Agriculture. New Phytologist DOI:10.1111/nph.12778.

35.    Xia HY, Zhao JH, Sun JH, Xue YF, Eagling T, Bao XG, Zhang FS, Li L* (2014) Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean (vol 56, pg 823, 2013). Science China-Life Sciences 57, 362-362.

36.    Yan S, Du XQ, Wu F, Li L, Li CY, Meng Z, (2014) Proteomics insights into the basis of interspecific facilitation for maize (Zea mays) in faba bean (Vicia faba)/maize intercropping. Journal of Proteomics 109, 111-124.

37.    Zhang DS, Zhang LZ, Liu JG, Han S, Wang Q, Evers JC, Liu J, van der Werf W, Li L (2014) Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations. Field Crops Research 169, 132-139.

38.    Xia HY, Zhao JH, Sun JG, Bao XG, Christie P, Zhang FS, Li L* (2013). Dynamics of root length and distribution and shoot biomass of maize affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research 150:52-62.

39.    Xia HY, Zhao JH, Sun JH, Xue YF, Eagling T, Bao XG, Zhang FS, Li L* (2013). Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean. Science China Life Science 56:823-834.

40.    Xia HY, Wang ZG, Zhao JH, Sun JH, Bao XG, Christie P, Zhang FS, Li L* (2013). Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Research 154:53-64.

41.    Zhang W, Ahanbieke P, Wang BJ, Xu WL, Li LH, Christie P, Li L* (2013). Root distribution and interactions in jujube tree/wheat agroforestry system. Agroforest Systems 87:929-939.

42.    Zhang YK, Chen FJ, Li L, Chen YH, Liu BR, Hou YL, Yuan LX, Zhang FS, Mi GH (2012) The role of maize root size in phosphorus uptake and productivity of maize/faba bean and maize/wheat intercropping systems. Sci China Life Sci 55: 993-1001.

43.    Li B, Krumbein A, Neugart S, Li L, Schreiner M (2012) Mixed cropping with maize combined with moderate UV-B radiations lead to enhanced flavonoid production and root growth in faba bean. Journal of Plant Interactions 7(4): 333-340.

44.    Li L, Rengel Z (2012) Soil Acidification as Affected by Phosphorus Sources and Interspecific Root Interactions between Wheat and Chickpea. Communications in Soil Science and Plant Analysis 43(13): 1749-1756.

45.    Mao L, Zhang LZ, Li WQ, van der Werf W, Sun JH, Spiertzd H, Li L (2012) Yield advantage and water saving in maize/pea intercrop. Field Crops Research 138: 11-20.

46.    Mei PP, Li L, Gui LG, Wang P, Christie P (2012) Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Research 130: 19-27.

47.    Li CJ, Li YY, Yu CB, Sun JH, Christie P, An M, Zhang FS, Li L* (2011) Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China. Plant and Soil 342(1-2): 221-231.

48.    Li QZ, Sun JH, Wei XJ, Christie P, Zhang FS, Li L* (2011) Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant and Soil 339(1-2): 147-161

49.    Li L*, Sun JH, Zhang FS (2011). Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages. Soil Science and Plant Nutrition 57: 61-67.

50.    Li CJ, Saeed M, Li L, Partley J (2011). Effects of wheat crop density on growth of ryegrass. Allelopathy Journal 27 (1): 43-54.

51.    Yu CB, Li YY, Li CJ, Sun JH, He XH, Zhang FS, Li L* (2010). An improved nitrogen difference method for estimating biological nitrogen fixation in legume-based intercropping systems. Biology and Fertility of Soils 46: 227-235.

52.    Li YY, Yu CB, Cheng X, Li CJ, Sun JH, Zhang FS, Lambers H, Li L* (2009) Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant and Soil 323:295308.

53.    Zhou LL, Cao J, Zhang FS, Li L* (2009) Rhizosphere acidification of faba bean, soybean and maize.Science of the Total Environment407: 4356-4362.

54.    Zhang HY, Schonhof I, Krumbein A, Gutezeit B, Li L, Stützel H., Schreiner M (2008) Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassica rapa ssp. rapifera L.). Journal of Plant Nutrition and Soil Science 171: 255-265.

55.    Li SM, Schonhof I, Krumbein A, Li L,Stützel H, Schreiner M (2007) Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. Journal of Agricultural and Food Chemistry 55 (21), 8452-8457.

56.    Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizospher phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences USA (PNAS) 104: 11192-11196.

57.    Song YN, Marschner P, Li L, Bao XG, Sun JH, Zhang FS (2007) Community composition ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat, maize and faba bean. Biology and Fertility of Soils 44:307-314.

58.    Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L* (2007) Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat, maize and faba bean. Biology and Fertility of Soils 43: 565-574.

59.    Chen YX, Zhang FS, Tang L, Zheng Y, Li YJ, Christie P and Li L* (2007) Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean. Plant and Soil 291: 1-13.

60.     Fan FL, Zhang FS, Song YN, Sun JH, Bao XG, Guo TW, Li L* (2006) Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant and Soil 283: 281-292.

61.    Li L, Sun JH, Zhang FS, Guo TW, Bao XG, Smith AF, Smith S (2006) Root distribution and interactions between intercropped species. Oecologia 147: 280-290

62.    Li WX, Li L, Sun JH, Zhang FS, Bao XG, Peng A, Tang C (2005) Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China. Agriculture, Ecosystems and Environment 105: 483-491.

63.    Xiao YB, Li L, Zhang FS (2004). Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. Plant and Soil 262: 45-54.

64.    Li SM, Li L, Zhang FS and Tang CX (2004). Acid phosphatase role in chickpea/maize intercropping. Annals of Botany 94: 297-303.

65.    Li L, Tang C, Rengel Z and Zhang FS (2004). Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant and Soil 261: 29-37.

66.    Lu SH, Liu XJ, Li L, Zhang FS, Zeng XZ and Tang C (2004) Effect of manganese spatial distribution in the soil profile on wheat growth in rice-wheat rotation. Plant and Soil 261:39-46.

67.    Zhang FS, Shen JB, Li L and Liu X (2004) An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant and Soil 260:89-99.

68.    Zheng Y, Zhang FS, Li L (2003) Iron Availability as Affected by Soil Moisture in Intercropped Peanut and Maize. Journal of Plant Nutrition 26:2425-2437.

69.    Li L, Tang C, Rengel Z and Zhang FS (2003) Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source. Plant and Soil 248:297-303.

70.    Zhang FS and Li L (2003). Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil 248:305-312.

71.    Li WX, Li L, Sun JH, Zhang FS and Christie P (2003) Effects of Nitrogen and phosphorus fertilizers and intercropping on uptake of nitrogen and phosphorus by wheat, maize and faba bean. Journal of Plant Nutrition 26 (3): 629-642.

72.    Li L, Zhang FS, Li XL, Christie P, Yang SC and Tang C (2003) Interspecific facilitation of nutrient uptakes by intercropped maize and faba bean. Nutrient Cycling in Agroecosystems 65: 61-71.

73.    Sun HG, Zhang FS, Li L and Tang C (2002) The morphological changes of wheat genotypes as affected by the levels of localized phosphate supply. Plant and Soil 245: 233-238.

74.    Li L, Sun JH, Zhang FS, Li XL, Yang SC and Rengel Z (2001) Wheat/maize or wheat/soybean strip intercropping. I. Yield advantage and interspecific interactions on nutrients. Field Crops Research 71(2): 123-137.

75.    Li L, Sun JH, Zhang FS, Li XL, Rengel Z and Yang SC (2001) Wheat/maize or soybean strip intercropping. II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research 71(3): 173-181.

76.    Zhang FS, Li L, Sun JH (2001). Contribution of above- and below-ground interactions to intercropping. In Horst et al. (eds) Plant Nutrition – Food security and sustainability of agroecosystems. Kluwer Academic Publishers pp979 – 980.

77.    Li L, Yang SC, Li XL, Zhang FS and Christie P (1999). Interspecific complementary and Competitive interactions between intercropped maize and faba bean. Plant and Soil 212: 205-214.

78.    Li L, Zhang FS (2005). Physiological mechanism of interspecific facilitation of nitrogen and phosphorus utilization in intercropping systems. Li, C.J., et al. (eds), Proceedings of the 15th International Plant Nutrition Colloquium. Plant Nutrition for Food Security, Human Health and Environmental Protection. Page 1060-1061.

79.    Li L, Tang C, Rengel Z, Zhang FS (2004) Soil acidification as affected by P source and interspecific interactions between wheat and chickpea. Proceedings of the 6th International Symposium on Plant-Soil Interactions at Low pH. Page 100-101.

80.    Li L, Zhang FS, Sun JH (2003) Effect of interspecific interactions between maize and different legumes on phosphorus uptake by maize in legumes/maize intercropping under two levels of nitrogen supply. Proceedings of 2nd International Symposium on Phosphorus Dynamics in the Soil-Plant Continuum. Pages 214-215.Perth, Western Australia, 21-26 September 2003

81.    Zhang FS, Li L, Sun JH (2003). Do interspecific interactions reduce phosphorus fertilizer rates in the faba bean/maize intercropping? Proceedings of 2nd International Symposium on Phosphorus Dynamics in the Soil-Plant Continuum.Pages 184-185. Perth, Western Australia, 21-26 September 2003

82.    Zhang FS, Li L, Sun JH (2001) Contribution of above- and below-ground interactions to intercropping. In Horst et al. (eds) Plant Nutrition – Food security and sustainability of agro-ecosystems. Kluwer Academic Publishers, pp979 – 980.

83.    Li L, Li XL, Zhang FS (2000) Facilitation of wheat to phosphorus uptake by soybean in the wheat/soybean intercropping. Fourth W.A. Symposium on Ion in the Soil-Water-Plant Continuum. Perth, Australia, April 26, 2000.

84.    84.  李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望*[J]. 中国生态农业学报, 2016, 24(4):403-415.

85.    85. 柳欣茹, 包兴国, 王志刚, & 李隆. (2016). 灌漠土上连续间作对作物生产力和土壤化学肥力的影响土壤学报, 53(4)951-962.

86.    86. 唐明明; 董楠; 包兴国; 卢秉林; 张炜平; 张美俊; 章芳芳; 李隆. 西北地区不同间套作模式养分吸收利用及其对产量优势的影响[J]. 中国农业大学学报, 2015, 20(5):48-56.

87.    87. 甘雅文, 李隆, 李鲁华,. 南疆核桃与小麦间作系统种间根直径及比根长空间分布特征[J]. 西北农业学报, 2015, 24(5):56-63.

88.    88. 甘雅文, 李隆,李鲁华,. 南疆核桃间作冬麦复合系统根系分布特征研究[J]. 西北农业学报, 2015, 24(3):102-110.

89.    89. 柴博, 李隆, 杨思存,. 玉米/鹰嘴豆间作条件下不同施磷量对灌耕灰钙土无机磷组分的影响[J]. 干旱地区农业研究, 2015, 33(1):85-90.

90.    90. 吴科生, 宋尚有, 李隆,. 氮肥和接种根瘤菌对豌豆/玉米间作产量和水分利用效率的影响[J]. 中国生态农业学报, 2014, 22(11):1274-1280.

91.    91. 左元梅, 张立祯, 李隆. 西北干旱区利用间套作促进能源植物的高产高效[J]. 生命科学, 2014(5):447-450.

92.    92. 王宝驹, 李隆, 李鲁华,. 南疆枣麦间作系统中根长密度、根表面积密度分布特征[J]. 西北农业学报, 2014, 23(3):67-73.

93.    93. 吴科生, 宋尚有, 李隆,. 施氮和豌豆/玉米间作对土壤无机氮时空分布的影响[J]. 中国生态农业学报, 2014, 22(12):1397-1404.

94.    94. 党小燕刘建国帕尼古丽王江丽危常州李隆.棉花间作模式中作物养分竞争吸收和积累动态的研究[J].植物营养与肥料学报,2013,19(1):166-174.

95.    95. 夏海勇, 赵建华, 孙建好, 薛艳芳, Tristan Eagling, 包兴国, 张福锁, 李隆.油菜、蚕豆、鹰嘴豆和大豆对间作玉米籽粒Fe,Mn,CuZn浓度及地上部累积量的影响[J].中国科学:生命科学,2013,43(7):557-568.

96.    96. 陈远学, 李隆, 汤利, 郑毅, 李勇杰, 张朝春, 张福锁.小麦/蚕豆间作系统中施氮对小麦氮营养及条锈病发生的影响[J].核农学报, 2013,27(7):1020-1028.

97.    97. 索东让, 李隆,宁科, 吴海燕.河西走廊制种田与生产田玉米需肥特点比较[J].植物营养与肥料学报,2013,19(4):816-823.

98.    98.  张义凯, 陈范骏, 李隆, 陈燕华, 刘丙然, 周玉玲, 袁力行, 张福锁, 米国华.不同类型的玉米根系对间作体系磷高效吸收以及生产力的影响[J].中国科学:生命科学,2012,42(10):841-849.

99.    党小燕, 刘建国, 帕尼古丽, 王江丽, 危常州, 李隆.不同棉花间作模式中作物养分吸收和利用对间作优势的贡献[J].  中国生态农业学报,2012,20(5):513-519.

100.  夏志敏, 周建斌, 梅沛沛, 王平, 桂林国, 李隆.玉米与蚕豆秸秆配施对秸秆分解及土壤养分含量的影响[J].应用生态学报,2012,23(1):103-108.

101.  夏志敏, 梅沛沛, 王平, 桂林国, 李隆, 周建斌.新垦灰钙土蚕豆/玉米间作系统土壤活性有机碳、氮的时空变异研究[J].土壤通报,2012,43(2):336-341.

102.  赵建华,孙建好,李隆,李伟绮.改变玉米行距种植对豌豆/玉米间作体系产量的影响[J].中国农业生态学报,2012,20(11):1451-1456.

103.  王平, 梅沛沛, 李隆, 张万政, 王晓凤, 桂林国.施磷对玉米与蚕豆间作体系养分吸收的影响[J].宁夏农林科技, 2012,53(12):92-95.

104.  党小燕, 刘建国, 帕尼古丽·阿汗别克, 王江丽, 危常州, 张立祯, 李隆.不同作物与棉花间作对棉纤维品质的影响[J].中国棉花,2011,38(12):18-20.

105.  李淑敏,李隆.蚕豆/玉米间作接种AM真菌和根瘤菌对外源有机磷利用的影响[J].农业现代化研究,2011,32(2):243-247.

106.  李玉英, 胡汉升, 程序, 孙建好, 李隆.种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响[J].生态学报, 2011,31(6):1617-1630.

107.  李玉英,庞发虎,孙建好,李隆,程序.根系分隔和施氮对蚕豆/玉米间作体系根系分布和形态的影响[J]. 中国农业大学学报,2010, 15( 4) : 13-19.

108.  李秋祝,于常兵,胡汉升,孙建好,陈伟,李隆.不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异[J]. 植物营养与肥料学报, 2010,16(4):777-785.

109.  兰玉峰,夏海勇,刘红亮,杨思存,宋建国,李隆. 施磷对西北沿黄灌耕灰钙土玉米/鹰嘴豆间作产量及种间相互作用的影响[J]. 中国生态农业学报, 2010,18(5): 917−922.

110.  余常兵,孙建好,李隆.种间相互作用对作物生长及养分吸收的影响[J]. 植物营养与肥料学报, 2009,15(1):1-8.

111.  李玉英,孙建好,余常兵,程序,张福锁,李隆. 施氮量和蚕豆/玉米间作对土壤无机氮时空分布的影响[J]. 植物营养与肥料学报, 2009,15 (4) : 815 – 823.

112.  李玉英,孙建好,李春杰,李隆,程序,张福锁. 施氮对蚕豆/玉米间作系统蚕豆农艺性状及结瘤特性的影响[J]. 中国农业科学, 2009,42(10):3467-3474. 

113.  李玉英,宋玉伟,程序,孙建好,刘吉利,李隆. 施氮对灌漠土春玉米干物质积累和氮素吸收利用动态的影响[J]. 中国农业大学学报, 2009,14 (1) :61-65.

114.  李玉英,余常兵,孙建好,李春杰,李隆,程序. 蚕豆/玉米间作系统经济生态施氮量及对氮素环境承受力[J]. 农业工程学报, 2008,24(3):223-227.

115.  苗锐,张福锁,李隆. 玉米/蚕豆、小麦/蚕豆和大麦/蚕豆间作体系地上部、地下部生物量及作物含氮量分析[J]. 中国农学通报, 2008,24(7):148-151.

116.  房增国,左元梅,李隆,张福锁.灭菌土壤玉米2花生混作对花生铁营养的影响研究[J].中国生态农业学报,2004,12(4):98-101.

117.  房增国,左元梅,李隆,张福锁.玉米花生混作体系中不同施氮水平对花生铁营养及固氮的影响[J],植物营养与肥料学报,2004, 10(4):386~390.

118.  李淑敏,李隆,张福锁.丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用[J].中国农业大学学报,2004,9(1):11~15.

119.  肖焱波,李隆,张福锁. 两种间作体系中养分竞争与营养促进作用研究[J].中国生态农业学报,2004,124):86-89.

120.  叶优良,包兴国,宋建兰,孙建好,李隆,张福锁,李庆江,周丽莉.长期施用不同肥料对小麦玉米间作产量、氮吸收利用和土壤硝态氮累积的影响[J],植物营养与肥料学报,2004, 10(2):113~119.

121.  李淑敏,李隆,张福锁.玉米/鹰嘴豆间作对有机磷利用差异的研究[J].中国农业科技导报,2004, 63):45~49.

122.  王晓丽,李隆,江荣风, 张福锁. 玉米/空心菜间作降低土壤及蔬菜中硝酸盐含量的研究[J].环境科学学报,2003, 4:463~467.

123.  吴华杰,李隆,张福锁.水稻/小麦间作中种间相互作用对镉吸收的影响[J].中国农业科技导报, 2003,53):44~48.

124.  肖焱波, 李隆,张福锁.小麦//蚕豆间作中的种间氮营养差异比较研究[J].植物营养与肥料学报, 2003,9(4):396~400.

125.  肖焱波,李隆, 张福锁.接种不同根瘤菌对间作蚕豆和小麦生长的促进作用研究[J].农业现代化研究, 2003.24(4):275~277.

126.  肖焱波,李隆,张福锁.豆科//禾本科间作系统中氮营养研究进展[J].中国农业科技导报,2003,5(6):44~49.

127.  叶优良,孙建好,李隆,张福锁.灌水对大麦/玉米带田土壤矿质氮影响的研究[J],水土保持学报, 2003,17(1):107~111.

128.  李隆,李晓林,张福锁.间作充分利用土壤资源的机制,在李春俭主编:土壤与植物营养研究新动态(第四卷)”,中国农业大学出版社,2001,p181-197.

129.  左元梅,李隆,张福锁,李晓林.根系分泌物促进间作作物营养效应研究进展,在李春俭主编:土壤与植物营养研究新动态(第四卷)”[M].中国农业大学出版社,2001.198-210.

130.  李文学,孙建好,李隆,张福锁.不同施肥处理与间作形式对带田中玉米产量及氮营养状况的影响[N],中国农业科技导报,2001,33):36-39.

131.  李隆,李晓林,张福锁,杨思存.小麦/大豆间作条件下作物养分吸收利用对间作优势的贡献[N].植物营养与肥料学报,2000,6(2): 140-146.

132.  李隆,李晓林,张福锁.小麦/大豆间作中小麦对大豆磷吸收的促进作用[N].生态学报,2000,20(4): 629-633.

133.  艾为党,李晓林,左元梅,李隆.玉米、花生根间菌丝桥对氮传递的研究[N].作物学报,2000,26(4):473-481.

134.  李隆,张福锁.间套作种植体系中的植物营养问题,在冯锋,张福锁和扬新泉编著,植物营养研究-进展与展望[M].中国农业大学出版社,2000,P97-113

135.  李隆,左元梅,刘永秀,李晓林,张福锁.根际生态系统理论在我国农业高产高效中的作用—— 间套种作物种间的根际生态效应的发现及应用前景[N].中国农业科技导报,2000.

136.  李隆,杨思存,孙建好,李晓林,张福锁.小麦/大豆间作中作物种间的竞争作用和促进作用[N].应用生态学报,1999,10(2): 197-200.

137.  李隆,杨思存,孙建好,李晓林,张福锁.小麦/大豆间作条件下作物养分吸收积累动态的研究[N].植物营养与肥料学报,1999,5(2): 163-171.

138.  艾为党,张俊伶,李隆,李晓林.黑麦草/红三叶草根系间菌丝桥传递磷的研究[N].草业学报,1999,73):14-20.

139.  艾为党,张俊伶,李隆,李晓林,冯固.三叶草体内磷通过菌丝桥向黑麦草的传递研究[N].应用生态学报,1999,10(5):615-618.

140.  李隆,李晓林.间作作物氮素营养研究进展[R],中国土壤学会,1998.

141.  李隆,金绍龄.小麦/玉米间作作物养分资源吸收和利用效率[R],在迈向21世纪的土壤与植物营养科学”,1997.

142.  金绍龄,李隆,张丽慧.小麦玉米带田作物PK营养特点研究[N].甘肃农业科技,1997.

143.  李隆,金绍龄,张丽慧,索东让,马永泰,吴国菁,王平,孙宁科.小麦、玉米带田中光捕获、利用及干物质积累特点[N],西北农业大学学报,24(5)42-48.

144.  金绍龄,李隆,张丽慧,马永泰,索东让,吴国菁,王平.小麦/玉米带田作物氮营养特点[N].西北农业大学学报,1996,24(5)35-41.

145.  金绍龄,李隆,张丽慧,马永泰,索东让,吴国菁,王平.小麦/玉米带田土壤肥力变化及培肥. I. 肥力变化及各种肥料对作物产量的影响[N].西北农业大学学报,1996,24(5)49-54.

146.  张丽慧,金绍龄,李隆,马永泰,索东让,吴国菁,孙宁科.小麦/玉米带田土壤肥力变化及培肥. II. 不同肥料对土壤养分含量变化的影响[N].西北农业大学学报,1996,24(5)55-60.

147.  李隆,金绍龄,张丽慧,孙宁科,马永泰,索东让,吴国菁.小麦/玉米带田不同用量氮肥残及回收率[N],西北农业大学学报,1996,24(5)61-67.

148.  李隆,金绍龄,张丽慧,吴国菁,马永泰,孙宁科,索东让.小麦/玉米带田玉米施氮时期的定量研究[N].西北农业大学学报,1996,24(5)68-74.

149.  索东让,孙宁科,吴国菁,马永泰,李隆,张丽慧,金绍龄.小麦/玉米带田磷肥分配方式及后效研究[N].西北农业大学学报,1996,24(5)75-79.

150.  李隆.植物营养模拟模型研究现状与展望,在张福锁等主编,土壤与植物营养研究新动态(第三卷)[M]. 中国农业出版社,1995,185-204.

151.  李隆.肥料在甘肃粮食生产中的贡献率[N].甘肃农业科技,1995,10:27-29.

152.  李隆,金绍龄.间作作物营养与施肥的几个问题,在中国植物营养与施肥学会主编,现代农业中的植物营养与施肥”[M].中国农业科技出版社,1995.

153.  李隆.影响磷肥后效的一些因子,在徐明岗主编,现代土壤科学研究[M],中国农业科技出版社,1995,602-604.

154.  李隆,邱进怀.小麦地膜玉米带田玉米施氮时期对产量及吸氮生理的影响[N],西北农业学报,1993,2(1):51-55.

155.  金绍龄,张丽慧,李隆.小麦玉米带田一种作物施用氮肥对配对作物氮营养的影响[N],西北农业学报,1993,2(3):1-6.

156.  金绍龄,张丽慧,李隆.春小麦花前氮营养在籽粒氮营养中的作用[N],甘肃农业科技,1993,12):28-30.

157.  李隆.浅析有机、无机肥在我省农田养分平衡中的作用[N].甘肃农业科技(增刊),1992.

158.  李隆.肥料试验中应用的单形格子设计及其统计分析[N].土壤通报,1992,6: 275-276.

159.  李隆.三因子混料试验数学模型的等产线绘制BASIC程序设计[N].甘肃农业科技(增刊),1991.

160.  李隆,邱进怀,包兴国.武威川水区小麦玉米带田土壤氮素转化与平衡初探[N],甘肃农业科技,1990(1):24-27.

161.  邱进怀,李隆,包兴国.平川灌区带田培肥节能高产栽培模式研究[N].甘肃农业科技,1990,10:24-26.

162.  李隆.用数学方法研究土壤理化性质与肥力状况关系的初步尝试[N].甘肃农业科技,1988,4.

163.  李隆.应用模糊综合评判评价土壤养分状况的初步尝试[M].甘肃省农科院建院30周年论文集,1988.

 

专著:

李隆著.间套作体系豆科作物固氮生态学原理与应用[M]. 中国农业大学出版社,2013, 60.6万字.

李隆等编,河西走廊和沿黄灌区间套作种植技术[M],中国农业出版社,2020,10万字

 

参编专著:

Li, L., Zhang, L.Z. and Zhang, F.S. Crop Mixtures and the Mechanisms of Overyielding. In:Levin S.A.(ed.) Encyclopedia of Biodiversity. Second edition [M]. 2013, 2:382-395. Waltham, MA: Academic Press.

李春俭主编《高级植物营养学》(第一版),中国农业大学出版社,2009

李春俭主编《高级植物营养学》(第二版),中国农业大学出版社,2015

李隆,张福锁.间套作增产和资源高效利用的地下部种间互作机制,中国当代生态学研究-生物多样性保育卷(李文华主编)[M].科学出版, 2013, 230 - 238,1万字.

Li L & Zhang FS. Productivity and Interspecific Interactions in Intercropping. In KG Saxen & KS Rao, Soil Biodiversity: Inventory, Functions and Management. Bishen Singh Mahendra Pal Singh. 2016

Li Long, Zhang Weiping, and Zhang Lizhen, How above-ground interspecific interactions between intercropped species contribute to overyielding and efficient resource utilization: A review of research in China. In Luo Shiming & Stephen R. Gliessman (eds) Agroecology in China: Science, Practice, and Sustainable Management. CRC Press, Taylor & Francis Group

Luqi Huang, Lanping Guo, Sheng Wang, Wisheng Tang, Ling Tong, Long Li, et al., Chapter 4. Technology and Perspective of Sustainable Biodiversity Utilization. In Li Wenhua (editor) Contemporary Ecology Research in China. Springer 2016.


Achievements

The software works Patent

Honor

Enrollment

Enrollment in previous years Application intention

Post: Professor

Duties:

Degree: PhD

Tel:

Email: lilong@cau.edu.cn

10 Visit

(0) (0)