个人资料
- 部门: 理学院
- 性别: 男
- 民族: 汉族
- 专业技术职务: 讲师(高校)
- 行政职务:
- 主要研究方向: 分析与PDE
- 毕业院校: 中国工程物理研究院
- 学位: 博士
- 联系电话:
- 电子邮箱: meng_fanfei@cau.edu.cn
- 办公地址: 中国农业大学东校区理学院410
- 通讯地址: 北京市海淀区清华东路17号
- 邮编: 100083
- 传真:
专家类别
- 学术学位导师类型:
- 专业学位研究生导师类型:
- 从事学科1:
- 从事学科2:
- 从事专业1:
- 从事专业2:
- 研究方向1:
- 研究方向2:
- 从事专业学位领域名称:
教育经历
-
2017.09.01-2022.06.21,理学博士学位,中国工程物理研究院研究生院,基础数学
-
2013.09.01-2017.07.01,理学学士学位,郑州大学,数学与应用数学
研究领域
利用调和分析工具来研究非线性偏微分方程 研究对象:非线性色散方程(主要为Hamiltonian型的非线性薛定谔方程,包括带有位势、耦合非线性项或耦合方程组、噪音驱动或随机初值、度量为黎曼流形等)。 关心问题:适定性(局部适定性与整体适定性)、长时间动力学行为(爆破与散射)、不变测度(Gibbs概率测度)等。
开授课程
本科生课程:近十年课程数据
-
1、一元微积分,2025-2026,第一学期,星期一星期三星期五,东校区
论文
Yu Chen, Jing Lu and Fanfei Meng, Focusing nonlinear Hartree equation with inverse-square potential, Mathematische Nachrichten, 293(2020), 2271-2298. DOI:10.1002/mana.201900331. Fanfei Meng and Chengbin Xu, Scattering for mass-resonance nonlinear Schrödinger system in 5D, Journal of Differential Equations, 275(2021), 837-857. DOI:10.1016/j.jde.2020.11.005. Fanfei Meng, A new proof of scattering for the 5D radial focusing Hartree equation, Applicable Analysis, 101(2022), 4412-4431. DOI:10.1080/00036811.2020.1859491. Fanfei Meng, Sheng Wang and Chengbin Xu, Scattering for three waves nonlinear Schrödinger system with mass-resonance in 5D, Calculus of Variations and Partial Differential Equations, 62(2023). DOI:10.1007/s00526-023-02435-4. Vo Van Au and Fanfei Meng, An asymptotic analysis and stability for a class of focusing Sobolev critical nonlinear Schrödinger equations, Journal of Differential Equations, 359(2023), 365-392. DOI:10.1016/j.jde.2023.02.040. Mingming Deng, Jing Lu and Fanfei Meng, Blow-up versus global well-posedness for the focusing INLS with inverse-square potential, Mathematical Methods in the Applied Sciences, 46(2023), 3285-3293. DOI:10.1002/mma.8690. Mingming Deng, Jing Lu and Fanfei Meng, Focusing intercritical NLS with inverse-square potential, Applicable Analysis, 102(2023), 1798-1807. DOI:10.1080/00036811.2021.2005784. Chuanwei Gao, Fanfei Meng, Chengbin Xu and Jiqiang Zheng, Scattering theory for quadratic nonlinear Schrödinger system in dimension six, Journal of Mathematical Analysis and Applications, 541(2025). DOI:10.1016/j.jmaa.2024.128708.
|